Patents by Inventor Katsunori Obata

Katsunori Obata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11018403
    Abstract: An electromagnetic wave transmission cable for transmitting an electromagnetic wave comprises a hollow waveguide tube and a foamed resin member. The hollowing waveguide tube includes a hollow dielectric layer formed in a tubular shape. The foamed resin member is provided over a predetermined length in a longitudinal direction of the hollow waveguide tube and covers a surface of the dielectric layer to surround an outer periphery of the hollow waveguide tube.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: May 25, 2021
    Assignee: PIONEER CORPORATION
    Inventors: Yasuo Hosoda, Tomoyuki Miyamoto, Katsunori Obata, Takahiro Togashi, Takao Tagiri
  • Publication number: 20190296416
    Abstract: An electromagnetic wave transmission cable for transmitting an electromagnetic wave comprises a hollow waveguide tube and a foamed resin member. The hollowing waveguide tube includes a hollow dielectric layer formed in a tubular shape. The foamed resin member is provided over a predetermined length in a longitudinal direction of the hollow waveguide tube and covers a surface of the dielectric layer to surround an outer periphery of the hollow waveguide tube.
    Type: Application
    Filed: October 18, 2017
    Publication date: September 26, 2019
    Inventors: Yasuo HOSODA, Tomoyuki MIYAMOTO, Katsunori OBATA, Takahiro TOGASHI, Takao TAGIRI
  • Publication number: 20070001244
    Abstract: In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to 1/100 or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.
    Type: Application
    Filed: September 7, 2006
    Publication date: January 4, 2007
    Inventors: Yasuhiro Shimamoto, Katsunori Obata, Kazuyoshi Torii, Masahiko Hiratani
  • Patent number: 7119407
    Abstract: In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to 1/100 or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: October 10, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Yasuhiro Shimamoto, Katsunori Obata, Kazuyoshi Torii, Masahiko Hiratani
  • Publication number: 20040262642
    Abstract: In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to {fraction (1/100)} or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.
    Type: Application
    Filed: July 28, 2004
    Publication date: December 30, 2004
    Applicant: Renesas Technology Corporation
    Inventors: Yasuhiro Shimamoto, Katsunori Obata, Kazuyoshi Torii, Masahiko Hiratani
  • Patent number: 6787451
    Abstract: In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to {fraction (1/100)} or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: September 7, 2004
    Assignee: Renesas Technology Corporation
    Inventors: Yasuhiro Shimamoto, Katsunori Obata, Kazuyoshi Torii, Masahiko Hiratani
  • Publication number: 20030042557
    Abstract: In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to {fraction (1/100)} or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.
    Type: Application
    Filed: August 13, 2002
    Publication date: March 6, 2003
    Inventors: Yasuhiro Shimamoto, Katsunori Obata, Kazuyoshi Torii, Masahiko Hiratani