Patents by Inventor Katsuzou Aihara

Katsuzou Aihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070279059
    Abstract: A first room-temperature space is formed penetrating through a cryostat along a center axis of a split-type multi-layer cylindrical superconducting coil system which has a ratio of the maximum empirical magnetic field to the central magnetic filed of not larger than 1.3 and is horizontally arranged such that the center axis of the coil is in the horizontal direction, a room-temperature shim coil system is arranged in said first room-temperature space to improve the homogeneity of the magnetic field, a second room-temperature space is formed penetrating through the cryostat and passing through the center of said split gap in the vertical direction, and a sample to be measured and an NMR probe having a solenoid-type probe coil are inserted in said second room-temperature space. Further, the NMR analyzer has a new function constituted by a system for irradiating and detecting the electromagnetic waves having wavelengths of shorter than 0.1 mm.
    Type: Application
    Filed: March 13, 2007
    Publication date: December 6, 2007
    Inventors: Katsuzou Aihara, Michiya Okada, Shigeru Kakugawa, Hiroshi Morita, Tsuyoshi Wakuda
  • Patent number: 7292040
    Abstract: A superconducting magnet configured for an NMR spectrometer includes a split type superconducting magnet having left solenoid superconducting magnets and right solenoid superconducting magnets with a center space therebetween for receiving a sample tube. A permanent current switch is provided and the left and right solenoid superconducting magnets are arranged symmetrically with respect to a center face of the center space. The left and right solenoid superconducting magnets are constituted by an outermost magnet and a plurality of innermost magnets and are arranged in concentric relation with respect to a vertical axis of the center space. A direction of current in at least one of the plurality of innermost magnets is minus when a direction of current in the outermost magnet is plus.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: November 6, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Shigeru Kakugawa, Michiya Okada, Katsuzou Aihara, Hiroshi Morita, Tsuyoshi Wakuda
  • Patent number: 7212003
    Abstract: A first room-temperature space is formed penetrating through a cryostat along a center axis of a split-type multi-layer cylindrical superconducting coil system which has a ratio of the maximum empirical magnetic field to the central magnetic field of not larger than 1.3 and is horizontally arranged such that the center axis of the coil is in the horizontal direction, a room-temperature shim coil system is arranged in said first room-temperature space to improve the homogeneity of the magnetic field, a second room-temperature space is formed penetrating through the cryostat and passing through the center of said split gap in the vertical direction, and a sample to be measured and an NMR probe having a solenoid-type probe coil are inserted in said second room-temperature space. Further, the NMR analyzer has a new function constituted by a system for irradiating and detecting the electromagnetic waves having wavelengths of shorter than 0.1 mm.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: May 1, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Katsuzou Aihara, Michiya Okada, Shigeru Kakugawa, Hiroshi Morita, Tsuyoshi Wakuda
  • Patent number: 7208954
    Abstract: A first room-temperature space is formed penetrating through a cryostat along a center axis of a split-type multi-layer cylindrical superconducting coil system which has a ratio of the maximum empirical magnetic field to the central magnetic filed of not larger than 1.3 and is horizontally arranged such that the center axis of the coil is in the horizontal direction, a room-temperature shim coil system is arranged in said first room-temperature space to improve the homogeneity of the magnetic field, a second room-temperature space is formed penetrating through the cryostat and passing through the center of said split gap in the vertical direction, and a sample to be measured and an NMR probe having a solenoid-type probe coil are inserted in said second room-temperature space. Further, the NMR analyzer has a new function constituted by a system for irradiating and detecting the electromagnetic waves having wavelengths of shorter than 0.1 mm.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: April 24, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Katsuzou Aihara, Michiya Okada, Shigeru Kakugawa, Hiroshi Morita, Tsuyoshi Wakuda
  • Patent number: 7154271
    Abstract: A superconducting magnet device configured for an NMR spectrometer includes a split type superconducting magnet having left and right solenoid superconducting magnets, wherein the split type superconducting magnet has a center space around a vertical center axis between the left and right solenoid superconducting magnets, a sample tube placed in the center space in order to enable placement of a sample therein, which is energized by the magnetic field generated by the split type superconducting magnet, a solenoid coil configured for detecting signals due to magnetic resonance from the energized sample, and a permanent current switch for holding the split type superconducting magnet to a permanent current mode.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: December 26, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Shigeru Kakugawa, Michiya Okada, Katsuzou Aihara, Hiroshi Morita, Tsuyoshi Wakuda
  • Patent number: 7138802
    Abstract: A nuclear magnetic resonance apparatus comprises a superconducting magnet that produces a static magnetic field, a probe having a probe coil that irradiates an RF pulse magnetic field and receives a free induction decay signal (FID signal) emitted therefrom, an RF power source that supplies the probe with an RF current, an amplifier that amplifies the FID signal, a detector that detects a signal, and an analyzer that analyzes the signal detected by the detector, wherein the probe coil includes a solenoid coil and a saddle type coil.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: November 21, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Morita, Michiya Okada, Shigeru Kakugawa, Katsuzou Aihara
  • Publication number: 20060250134
    Abstract: A superconducting magnet configured for an NMR spectrometer includes a split type superconducting magnet having left solenoid superconducting magnets and right solenoid superconducting magnets with a center space therebetween for receiving a sample tube. A permanent current switch is provided and the left and right solenoid superconducting magnets are arranged symmetrically with respect to a center face of the center space. The left and right solenoid superconducting magnets are constituted by an outermost magnet and a plurality of innermost magnets and are arranged in concentric relation with respect to a vertical axis of the center space. A direction of current in at least one of the plurality of innermost magnets is minus when a direction of current in the outermost magnet is plus.
    Type: Application
    Filed: July 20, 2006
    Publication date: November 9, 2006
    Inventors: Shigeru Kakugawa, Michiya Okada, Katsuzou Aihara, Hiroshi Morita, Tsuyoshi Wakuda
  • Publication number: 20060186885
    Abstract: A nuclear magnetic resonance apparatus comprises a superconducting magnet that produces a static magnetic field, a probe having a probe coil that irradiates an RF pulse magnetic field and receives a free induction decay signal (FID signal) emitted therefrom, an RF power source that supplies the probe with an RF current, an amplifier that amplifies the FID signal, a detector that detects a signal, and an analyzer that analyzes the signal detected by the detector, wherein the probe coil includes a solenoid coil and a saddle type coil.
    Type: Application
    Filed: April 20, 2006
    Publication date: August 24, 2006
    Inventors: Hiroshi Morita, Michiya Okada, Shigeru Kakugawa, Katsuzou Aihara
  • Patent number: 7084634
    Abstract: A nuclear magnetic resonance apparatus comprises a superconducting magnet that produces a static magnetic field, a probe having a probe coil that irradiates an RF pulse magnetic field and receives a free induction decay signal (FID signal) emitted therefrom, an RF power source that supplies the probe with an RF current, an amplifier that amplifies the FID signal, a detector that detects a signal, and an analyzer that analyzes the signal detected by the detector, wherein the probe coil includes a solenoid coil and a saddle type coil.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: August 1, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Morita, Michiya Okada, Shigeru Kakugawa, Katsuzou Aihara
  • Patent number: 7084635
    Abstract: To provide a probe coil for an NMR apparatus which can transmit and receive high frequency radio waves with improved Q-factor and S/N ratio. As a measure, the probe coil for an NMR apparatus is provided as of a solenoid type formed of magnesium diboride superconductor. As another measure, the probe coil for an NMR apparatus has a plurality of coils using magnesium diboride superconductors connected in series. As further another measure, there is used a magnesium diboride superconductor mixed with metal. As still further another measure, the probe coil for an NMR apparatus is formed by using a single metal selected from gold, silver, copper, aluminum, iron, platinum, palladium, nickel, stainless steel, chromium, magnesium, tantalum, niobium, titanium, zinc, beryllium, tungsten, or cobalt, or an alloy including a plurality thereof.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 1, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Morita, Michiya Okada, Katsuzou Aihara
  • Publication number: 20060125478
    Abstract: A superconducting magnet device configured for an NMR spectrometer includes a split type superconducting magnet having left and right solenoid superconducting magnets, wherein the split type superconducting magnet has a center space around a vertical center axis between the left and right solenoid superconducting magnets, a sample tube placed in the center space in order to enable placement of a sample therein, which is energized by the magnetic field generated by the split type superconducting magnet, a solenoid coil configured for detecting signals due to magnetic resonance from the energized sample, and a permanent current switch for holding the split type superconducting magnet to a permanent current mode.
    Type: Application
    Filed: February 7, 2006
    Publication date: June 15, 2006
    Inventors: Shigeru Kakugawa, Michiya Okada, Katsuzou Aihara, Hiroshi Morita, Tsuyoshi Wakuda
  • Patent number: 7053621
    Abstract: A split type magnet device configured for a high-sensitivity NMR apparatus and used for solution analysis generates a uniform magnetic field at the center portion of the magnet device of at least 11 T, which is used for determining a sample. The NMR magnet device has left and right solenoid superconducting magnets, which face each other with a predetermined distance being provided therebetween. The left solenoid superconducting magnets and the right solenoid superconducting magnets are substantially coaxial to a central axis, and constituted respectively by a plurality of outermost magnets and a separate plurality of innermost magnets. When a sample energizing current generates a main magnetic NMR detection field in the vicinity of a center portion of the apparatus the current direction in at least one of the plurality of innermost magnets is minus while the current direction in at least one of the plurality of outermost magnets is plus.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: May 30, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Shigeru Kakugawa, Michiya Okada, Katsuzou Aihara, Hiroshi Morita, Tsuyoshi Wakuda
  • Patent number: 6975118
    Abstract: It is possible to grasp the behavior of a protein in a cell by realizing a nuclear magnetic resonance imaging method having spatial resolutions on the scale of a cell, and to provide an industrial measure for developing a high-quality protein utilizing this technology. In order to realize spatial resolutions in the order of one-tenth the size of a cell, a supersensitive measurement is realized by the combination of a solenoid detector coil and a high magnetic field NMR of not less than 14 Tesla, which has not been used so far. It is combined with the magnetic field uniformity of 0.001 ppm, so that the supersensitive NMR imaging of 0.5 ?m, which has been impossible heretofore, is realized. The physico-chemical behavior of protein molecules can be easily clarified, and thus the bioinfomatic network or the process of metabolism of the cell can be brought out.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: December 13, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Michiya Okada, Tsuyoshi Wakuda, Shigeru Kakugawa, Hiroshi Morita, Katsuzou Aihara
  • Patent number: 6967482
    Abstract: To provide a probe coil for an NMR apparatus which can transmit and receive high frequency radio waves with improved Q-factor and S/N ratio. As a measure, the probe coil for an NMR apparatus is provided as of a solenoid type formed of magnesium diboride superconductor. As another measure, the probe coil for an NMR apparatus has a plurality of coils using magnesium diboride superconductors connected in series. As further another measure, there is used a magnesium diboride superconductor mixed with metal. As still further another measure, the probe coil for an NMR apparatus is formed by using a single metal selected from gold, silver, copper, aluminum, iron, platinum, palladium, nickel, stainless steel, chromium, magnesium, tantalum, niobium, titanium, zinc, beryllium, tungsten, or cobalt, or an alloy including a plurality thereof.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: November 22, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Morita, Michiya Okada, Katsuzou Aihara
  • Publication number: 20050253586
    Abstract: A split type magnet device for a high-sensitivity NMR apparatus to be used for solution analysis generates a remarkably uniform magnetic field at the center portion of the magnet device used for determining a sample. The magnet device for NMR apparatus has first multilayer coils and second multilayer coils, which face each other with a predetermined distance being provided therebetween, each of pairs of the first and the second coils being substantially coaxial with respect to a central axis, and each of layers of each of the first and the second multilayer coils having at least one coil. An energizing current of at least one of the coils constituting an innermost layer of each of the first and the second multilayer coils is in a minus direction, when an energizing current of the coil used for generating a main magnetic field for NMR detection in the vicinity of a center portion of the apparatus is in a plus direction.
    Type: Application
    Filed: March 14, 2005
    Publication date: November 17, 2005
    Inventors: Shigeru Kakugawa, Michiya Okada, Katsuzou Aihara, Hiroshi Morita, Tsuyoshi Wakuda
  • Publication number: 20050248349
    Abstract: A supersensitive nuclear magnetic resonance imaging apparatus includes a superconducting magnet, a gradient magnetic field coil, a high frequency emitting coil, and a receiving coil, wherein a biosample, including at least one of cells, organic tissues, and laboratory small animals, is inserted in a sample chamber of generally 1 to 30 mm in diameter. The superconducting magnet is formed of laterally divided split magnets, and the direction of the magnetic field generated by the magnet is generally horizontal. The receiving coil is in the form of a solenoid coil, and the biosample is inserted from a direction orthogonal to the direction of the magnetic field in a generally vertical direction. The spatial resolution in imaging of the biosample is not more than one-tenth of a cell that forms the biosample.
    Type: Application
    Filed: June 28, 2005
    Publication date: November 10, 2005
    Inventors: Michiya Okada, Tsuyoshi Wakuda, Shigeru Kakugawa, Hiroshi Morita, Katsuzou Aihara
  • Publication number: 20050231202
    Abstract: To provide a probe coil for an NMR apparatus which can transmit and receive high frequency radio waves with improved Q-factor and S/N ratio. As a measure, the probe coil for an NMR apparatus is provided as of a solenoid type formed of magnesium diboride superconductor. As another measure, the probe coil for an NMR apparatus has a plurality of coils using magnesium diboride superconductors connected in series. As further another measure, there is used a magnesium diboride superconductor mixed with metal. As still further another measure, the probe coil for an NMR apparatus is formed by using a single metal selected from gold, silver, copper, aluminum, iron, platinum, palladium, nickel, stainless steel, chromium, magnesium, tantalum, niobium, titanium, zinc, beryllium, tungsten, or cobalt, or an alloy including a plurality thereof.
    Type: Application
    Filed: May 31, 2005
    Publication date: October 20, 2005
    Inventors: Hiroshi Morita, Michiya Okada, Katsuzou Aihara
  • Patent number: 6937019
    Abstract: A supersensitive nuclear magnetic resonance imaging apparatus includes superconducting magnet, a gradient magnetic field coil, a high frequency emitting coil, and a receiving coil, wherein a biosample, including at least one of cells, organic tissues, and laboratory small animals, is inserted in a sample chamber of generally 1 to 30 mm in diameter. The superconducting magnet is formed of laterally divided split magnets, and the direction of the magnetic field generated by the magnet is generally horizontal. The receiving coil is in the form of a solenoid coil, and the biosample is inserted from a direction orthogonal to the direction of the magnetic field in a generally vertical direction. The spatial resolution in imaging of the biosample is not more than one-tenth of a cell that forms the biosample.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: August 30, 2005
    Inventors: Michiya Okada, Tsuyoshi Wakuda, Shigeru Kakugawa, Hiroshi Morita, Katsuzou Aihara
  • Publication number: 20050122112
    Abstract: A first room-temperature space is formed penetrating through a cryostat along a center axis of a split-type multi-layer cylindrical superconducting coil system which has a ratio of the maximum empirical magnetic field to the central magnetic filed of not larger than 1.3 and is horizontally arranged such that the center axis of the coil is in the horizontal direction, a room-temperature shim coil system is arranged in said first room-temperature space to improve the homogeneity of the magnetic field, a second room-temperature space is formed penetrating through the cryostat and passing through the center of said split gap in the vertical direction, and a sample to be measured and an NMR probe having a solenoid-type probe coil are inserted in said second room-temperature space. Further, the NMR analyzer has a new function constituted by a system for irradiating and detecting the electromagnetic waves having wavelengths of shorter than 0.1 mm.
    Type: Application
    Filed: January 3, 2005
    Publication date: June 9, 2005
    Inventors: Katsuzou Aihara, Michiya Okada, Shigeru Kakugawa, Hiroshi Morita, Tsuyoshi Wakuda
  • Publication number: 20050083059
    Abstract: A nuclear magnetic resonance apparatus comprises a superconducting magnet that produces a static magnetic field, a probe having a probe coil that irradiates an RF pulse magnetic field and receives a free induction decay signal (FID signal) emitted therefrom, an RF power source that supplies the probe with an RF current, an amplifier that amplifies the FID signal, a detector that detects a signal, and an analyzer that analyzes the signal detected by the detector, wherein the probe coil includes a solenoid coil and a saddle type coil.
    Type: Application
    Filed: November 5, 2004
    Publication date: April 21, 2005
    Inventors: Hiroshi Morita, Michiya Okada, Shigeru Kakugawa, Katsuzou Aihara