Patents by Inventor Kazuaki HAGA

Kazuaki HAGA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9230733
    Abstract: Provided is a manufacturing method of a rare-earth magnet with high coercive force, including a first step of pressing-forming powder as a rare-earth magnet material to form a compact S, the powder including a RE-Fe—B main phase MP (RE: at least one type of Nd and Pr) and a RE-X alloy (X: metal element) grain boundary phase surrounding the main phase; and second step of bringing a modifier alloy M into contact with the compact S or a rare-earth magnet precursor C obtained by hot deformation processing of the compact S, followed by heat treatment to penetrant diffuse melt of the modifier alloy M into the compact S or the rare-earth magnet precursor C to manufacture the rare-earth magnet RM, the modifier alloy including a RE-Y (Y: metal element and not including a heavy rare-earth element) alloy having a eutectic or a RE-rich hyper-eutectic composition.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: January 5, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuaki Haga, Noritaka Miyamoto, Tetsuya Shoji, Noritsugu Sakuma, Shinya Omura, Motoki Hiraoka
  • Patent number: 9197105
    Abstract: In an IPM motor rotor, a rotor core has a plurality of magnetic poles, and each magnetic pole is formed by two permanent magnets. The two permanent magnets of each magnetic pole are two split pieces obtained by splitting one parent permanent magnet that is larger than the permanent magnets.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: November 24, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomonari Kogure, Kazuaki Haga, Hiroko Kurihara
  • Publication number: 20150287528
    Abstract: Provided is a method for manufacturing a rare-earth magnet enabling effective penetrant-diffusion of a melt of modifier alloy powder without generating oxidation reaction or hydroxylation reaction when the modifier alloy powder is used for a better coercive force as well.
    Type: Application
    Filed: November 13, 2013
    Publication date: October 8, 2015
    Inventors: Kazuaki Haga, Noritaka Miyamoto, Tetsuya Shoji, Daisuke Sakuma
  • Publication number: 20150235747
    Abstract: A rare-earth sintered magnet including a relatively large main phase, and method for manufacturing same. The rare-earth sintered magnet having excellent coercive-force performance that can be manufactured without using heavy rare-earth elements such as Dy, and including: a RE-T-B main phase C (RE: Nd or Pr, T: Fe or Fe and a part thereof substituted with Co), and a grain boundary phase B surrounding the main phase C, the grain boundary phase including the RE element and the T element. The T element at the grain boundary phase B has density of 60 at % or less, and the grain boundary B has a thickness decreasing from a surface S of the rare-earth sintered magnet M to an inside thereof, and the grain boundary phase B at an area SA of a surface layer of the rare-earth sintered magnet M has an average thickness of 10 nm or more.
    Type: Application
    Filed: October 2, 2013
    Publication date: August 20, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritaka Miyamoto, Tetsuya Shoji, Kazuaki Haga
  • Publication number: 20150228386
    Abstract: The present invention is a method capable of producing a rare-earth magnet with excellent magnetization and coercivity. The method includes producing a sintered body including a main phase and grain boundary phase and represented by (R11-xR2x)aTMbBcMd (where R1 represents one or more rare-earth elements including Y, R2 represents a rare-earth element different than R1, TM represents transition metal including at least one of Fe, Ni, or Co, B represents boron, M represents at least one of Ti, Ga, Zn, Si, Al, etc., 0.01?x?1, 12?a?20, b=100?a?c?d, 5?c?20, and 0?d?3 (all at %)); applying hot deformation processing to the sintered body to produce a precursor of the magnet; and diffusing/infiltrating melt of a R3-M modifying alloy (rare-earth element where R3 includes R1 and R2) into the grain boundary phase of the precursor.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 13, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritsugu SAKUMA, Tetsuya SHOJI, Kazuaki HAGA
  • Publication number: 20130195710
    Abstract: Provided is a manufacturing method of a rare-earth magnet capable of penetrant-diffusing a modifier alloy to increase a coercive force (especially a coercive force under a high-temperature atmosphere) at a temperature lower than the conventional method for manufacturing a rare-earth magnet without using heavy rare-earth metals such as Dy and Tb, and accordingly capable of manufacturing a high coercivity rare-earth magnet at the lowest cost possible.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 1, 2013
    Inventors: Kazuaki HAGA, Noritaka MIYAMOTO, Tetsuya SHOJI, Noritsugu SAKUMA, Shinya OMURA, Motoki HIRAOKA
  • Publication number: 20120153765
    Abstract: In an IPM motor rotor, a rotor core has a plurality of magnetic poles, and each magnetic pole is formed by two permanent magnets. The two permanent magnets of each magnetic pole are two split pieces obtained by splitting one parent permanent magnet that is larger than the permanent magnets.
    Type: Application
    Filed: December 28, 2011
    Publication date: June 21, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomonari KOGURE, Kazuaki HAGA, Hiroko Kurihara