Patents by Inventor Kazuhiko Tasaka

Kazuhiko Tasaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10076773
    Abstract: The method for cleaning a reactor of the present invention comprises passing a solvent through a wax-fraction hydrocracking apparatus which is charged with a catalyst and to which supply of a wax fraction is stopped, wherein the solvent comprising at least one oil selected from a group consisting of hydrocarbon and vegetable oils, and having a sulfur content of less than 5 ppm and being in a liquid state at 15° C.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: September 18, 2018
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Shinya Takahashi, Kazuhiko Tasaka, Yuichi Tanaka, Marie Iwama
  • Patent number: 9688917
    Abstract: In the hydrocarbon-producing apparatus, a vapor-liquid separation tank of a second vapor-liquid separation unit is provided with a filling material layer. A vapor-liquid separation tank of the first vapor-liquid separation unit has a first return line. The vapor-liquid separation tank of the second vapor-liquid separation unit has a second return line. A light component of light oil discharged from a bottom of the vapor-liquid separation tank is returned to a portion between a top side above a return-location from the second return line within the vapor-liquid separation tank of the second vapor-liquid separation unit, and a line directly connected with a cooler installed on the first vapor-liquid separation unit through the first return line. A heavy component of light oil discharged from a bottom of the vapor-liquid separation tank of the second vapor-liquid separation unit is returned to the filling material layer through the second return line.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: June 27, 2017
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yukifumi Ishito, Junichi Inoue, Masaki Shingu, Haruki Nagano, Kazuhiko Tasaka
  • Publication number: 20170009153
    Abstract: Hydrocarbon oil obtained by Fischer-Tropsch (FT) synthesis reaction using a catalyst within a slurry bed reactor is fractionated into a distilled oil and a column bottom oil in a rectifying column, part of the column bottom oil is flowed into a first transfer line that connects a column bottom of the rectifying column to a hydrocracker, at least part of the column bottom oil is flowed into a second transfer line branched from the first transfer line and connected to the first transfer line downstream of the branching point, the amount of the catalyst fine powder to be captured is monitored while the catalyst fine powder in the column bottom oil that flows in the second transfer line are captured by a detachable filter provided in the second transfer line, and the column bottom oil is hydrocracked within the hydrocracker.
    Type: Application
    Filed: September 22, 2016
    Publication date: January 12, 2017
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Kazuhiko TASAKA, Yuichi TANAKA, Marie IWAMA
  • Patent number: 9513051
    Abstract: There is provided a method for recovering hydrocarbon compounds from a gaseous by-products generated in the Fisher-Tropsch synthesis reaction, the method comprising a pressurizing step in which the gaseous by-products are pressurized, a cooling step in which the pressurized gaseous by-products are pressurized to liquefy hydrocarbon compounds in the gaseous by-products, and a separating step in which the hydrocarbon compounds liquefied in the cooling step are separated from the remaining gaseous by-products.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: December 6, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9499453
    Abstract: A catalyst filling apparatus is for a bubble column slurry bed reactor for the FT synthesis reaction. The apparatus includes: a slurry preparation tank installed adjacent to the reactor and configured to prepare a slurry S from a FT synthesis reaction catalyst and a slurry preparation oil; an upper part communication line configured to direct the slurry from the reactor to the slurry preparation tank; a lower part communication line configured to direct the slurry in the slurry preparation tank to the reactor; and a pressure equalizing line configured to communicate the reactor with the slurry preparation tank. The upper part communication line is downwardly inclined from the reactor toward the slurry preparation tank, and the lower part communication line is upwardly inclined from the reactor toward the slurry preparation tank. An inert gas introduction device is provided on the slurry preparation tank.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: November 22, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMKIN ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9493714
    Abstract: Hydrocarbon oil obtained by Fischer-Tropsch (FT) synthesis reaction using a catalyst within a slurry bed reactor is fractionated into a distilled oil and a column bottom oil in a rectifying column, part of the column bottom oil is flowed into a first transfer line that connects a column bottom of the rectifying column to a hydrocracker, at least part of the column bottom oil is flowed into a second transfer line branched from the first transfer line and connected to the first transfer line downstream of the branching point, the amount of the catalyst fine powder to be captured is monitored while the catalyst fine powder in the column bottom oil that flows in the second transfer line are captured by a detachable filter provided in the second transfer line, and the column bottom oil is hydrocracked within the hydrocracker.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: November 15, 2016
    Assignees: JAPAN OIL, GAS, AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Kazuhiko Tasaka, Yuichi Tanaka, Marie Iwama
  • Patent number: 9487713
    Abstract: The present invention provides a method for producing a hydrocarbon oil, including performing a hydrocracking by continuously feeding, to a hydrocracking reactor containing a hydrocracking catalyst, a wax to be processed including: a raw wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C; and an uncracked wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C, which uncracked wax is separated from a hydrocracking product discharged from the reactor, to thereby yield a hydrocarbon oil including hydrocarbons with a boiling point of 360° C or lower.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: November 8, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Marie Iwama, Kazuhiko Tasaka, Yuichi Tanaka
  • Patent number: 9475036
    Abstract: The hydrotreating catalyst of the present invention is a hydrotreating catalyst including a catalyst support including an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrotreating catalyst contains a carbonaceous substance including a carbon atom, and the content of the carbonaceous substance in the hydrotreating catalyst is 0.05 to 1% by mass in terms of the carbon atom.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: October 25, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Patent number: 9434657
    Abstract: The hydrocarbon synthesis reaction apparatus is provided with a synthesis gas supply line in which a synthesis gas is compressed and supplied by a first compressor, a reactor configured to accommodate a catalyst slurry, a gas-liquid separator configured to separate an unreacted synthesis gas and hydrocarbons discharged from the reactor into a gas and a liquid, a first recycle line in which the unreacted synthesis gas after separation into a gas and a liquid is compressed and recycled into the reactor by a second compressor, and a second recycle line configured to recycle a residual unreacted synthesis gas after separation into a gas and a liquid into the inlet side of the first compressor at the time of start-up operation when the synthesis gas is gradually increased in the amount to be introduced.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 6, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd, COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD
    Inventors: Yasuhiro Onishi, Kazuhiko Tasaka, Tomoyuki Mikuriya
  • Patent number: 9404050
    Abstract: A startup method for a fractionator that is supplied with, and fractionally distills, a hydrocracked product obtained in a wax fraction hydrocracking step by hydrocracking a wax fraction contained within a Fischer-Tropsch synthetic oil, the method including a preheating step of preheating the fractionator using a hydrocarbon oil that includes at least a portion of the hydrocracked product and is liquid at a normal temperature and normal pressure.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 2, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9376352
    Abstract: A start-up method of a bubble column slurry bed reactor for producing hydrocarbons includes: a first step that fills into a reactor a slurry in which a Fischer-Tropsch synthesis reaction catalyst particles are suspended in a slurry preparation oil with a 5% distillation point of 120 to 270° C., a 95% distillation point of 330 to 650° C., and a sulfur component and an aromatic component of 1 mass ppm or less, and a second step that, in a state where synthesis gas that is primarily hydrogen and carbon monoxide is introduced into the slurry filled into the reactor, raises the temperature of the reactor and starts the Fischer-Tropsch synthesis reaction. As the slurry preparation oil, one containing predetermined components in preset amounts is used. In the first step, the slurry is filled into the reactor in an amount in which airborne droplets do not flow out.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: June 28, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9266099
    Abstract: The regenerated hydrocracking catalyst according to the present invention is a regenerated hydrocracking catalyst prepared by regenerating a used hydrocracking catalyst including: a catalyst support containing zeolite and an amorphous composite metal oxide having solid acidity; and at least one active metal supported by the catalyst support, selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the regenerated hydrocracking catalyst contains 0.05 to 1% by mass of a carbonaceous substance in terms of carbon atoms based on the entire mass of the catalyst.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: February 23, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Publication number: 20160046869
    Abstract: In the hydrocarbon-producing apparatus, a vapor-liquid separation tank of a second vapor-liquid separation unit is provided with a filling material layer. A vapor-liquid separation tank of the first vapor-liquid separation unit has a first return line. The vapor-liquid separation tank of the second vapor-liquid separation unit has a second return line. A light component of light oil discharged from a bottom of the vapor-liquid separation tank is returned to a portion between a top side above a return-location from the second return line within the vapor-liquid separation tank of the second vapor-liquid separation unit, and a line directly connected with a cooler installed on the first vapor-liquid separation unit through the first return line. A heavy component of light oil discharged from a bottom of the vapor-liquid separation tank of the second vapor-liquid separation unit is returned to the filling material layer through the second return line.
    Type: Application
    Filed: March 19, 2014
    Publication date: February 18, 2016
    Inventors: Yukifumi ISHITO, Junichi INOUE, Masaki SHINGU, Haruki NAGANO, Kazuhiko TASAKA
  • Patent number: 9186658
    Abstract: The hydrocracking catalyst of the present invention is a hydrocracking catalyst comprising a catalyst support comprising a zeolite and an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrocracking catalyst contains a carbonaceous substance comprising a carbon atom, and the content of the carbonaceous substance in the hydrocracking catalyst is 0.05 to 1% by mass in terms of the carbon atom.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: November 17, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Patent number: 9023195
    Abstract: A process for hydrotreating a naphtha fraction that includes a step of estimating the difference between the naphtha fraction hydrotreating reactor outlet temperature and inlet temperature, based on the reaction temperature of the Fischer-Tropsch synthesis reaction and the ratio of the flow rate of the treated naphtha fraction returned to the naphtha fraction hydrotreating step relative to the flow rate of the treated naphtha fraction discharged from the naphtha fraction hydrotreating step, a step of measuring the difference between the naphtha fraction hydrotreating reactor outlet temperature and inlet temperature, and a step of adjusting the reaction temperature of the naphtha fraction hydrotreating step so that the measured difference between the naphtha fraction hydrotreating reactor outlet temperature and inlet temperature becomes substantially equal to the estimated difference between the naphtha fraction hydrotreating reactor outlet temperature and inlet temperature.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: May 5, 2015
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Kazuhiko Tasaka, Yuichi Tanaka, Marie Iwama
  • Publication number: 20150087730
    Abstract: A start-up method of a bubble column slurry bed reactor for producing hydrocarbons includes: a first step that fills into a reactor a slurry in which a Fischer-Tropsch synthesis reaction catalyst particles are suspended in a slurry preparation oil with a 5% distillation point of 120 to 270° C., a 95% distillation point of 330 to 650° C., and a sulfur component and an aromatic component of 1 mass ppm or less, and a second step that, in a state where synthesis gas that is primarily hydrogen and carbon monoxide is introduced into the slurry filled into the reactor, raises the temperature of the reactor and starts the Fischer-Tropsch synthesis reaction. As the slurry preparation oil, one containing predetermined components in preset amounts is used. In the first step, the slurry is filled into the reactor in an amount in which airborne droplets do not flow out.
    Type: Application
    Filed: March 27, 2013
    Publication date: March 26, 2015
    Inventor: Kazuhiko Tasaka
  • Publication number: 20150064070
    Abstract: A catalyst filling apparatus is for a bubble column slurry bed reactor for the FT synthesis reaction. The apparatus includes: a slurry preparation tank installed adjacent to the reactor and configured to prepare a slurry S from a FT synthesis reaction catalyst and a slurry preparation oil; an upper part communication line configured to direct the slurry from the reactor to the slurry preparation tank; a lower part communication line configured to direct the slurry in the slurry preparation tank to the reactor; and a pressure equalizing line configured to communicate the reactor with the slurry preparation tank. The upper part communication line is downwardly inclined from the reactor toward the slurry preparation tank, and the lower part communication line is upwardly inclined from the reactor toward the slurry preparation tank. An inert gas introduction device is provided on the slurry preparation tank.
    Type: Application
    Filed: March 27, 2013
    Publication date: March 5, 2015
    Inventor: Kazuhiko Tasaka
  • Publication number: 20150056112
    Abstract: Provided is a method for synthesizing liquid hydrocarbon compounds wherein synthesizing liquid hydrocarbon compounds from a synthesis gas by a Fisher-Tropsch synthesis reaction. The method includes a first absorption step of absorbing a carbon dioxide gas, which is contained in gaseous by-products generated in the Fisher-Tropsch synthesis reaction, with an absorbent, and a second absorption step of absorbing a carbon dioxide gas, which is contained in the synthesis gas, with the absorbent which is passed through the first absorption step.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Applicants: Japan Oil, Gas and Metals National Corporation, INPEX Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel & Sumikin Engineering Co., Ltd.
    Inventor: Kazuhiko Tasaka
  • Publication number: 20140377142
    Abstract: Hydrocarbon oil obtained by Fischer-Tropsch synthesis reaction using a slurry bed reactor holding a slurry of a liquid hydrocarbon in which a catalyst is suspended; the hydrocarbon oil is fractionated into a distilled oil and a column bottom oil containing the catalyst fine powder by a rectifying column; at least part of the column bottom oil is transferred to a storage tank, and the catalyst fine powder is sedimented to the bottom of the storage tank to capture the catalyst fine powder; a residue of the column bottom oil is transferred from the rectifying column to a hydrocracker, and/or the supernatant of the column bottom oil from which the catalyst fine powder is captured by the storage tank is transferred from the storage tank to the hydrocracker; and using the hydrocracker, the residue of the column bottom oil and/or the supernatant of the column bottom oil is hydrocracked.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Marie IWAMA, Kazuhiko TASAKA, Yuichi TANAKA
  • Patent number: 8906969
    Abstract: Hydrocarbon oil obtained by Fischer-Tropsch synthesis reaction using a slurry bed reactor holding a slurry of a liquid hydrocarbon in which a catalyst is suspended; the hydrocarbon oil is fractionated into a distilled oil and a column bottom oil containing the catalyst fine powder by a rectifying column; at least part of the column bottom oil is transferred to a storage tank, and the catalyst fine powder is sedimented to the bottom of the storage tank to capture the catalyst fine powder; a residue of the column bottom oil is transferred from the rectifying column to a hydrocracker, and/or the supernatant of the column bottom oil from which the catalyst fine powder is captured by the storage tank is transferred from the storage tank to the hydrocracker; and using the hydrocracker, the residue of the column bottom oil and/or the supernatant of the column bottom oil is hydrocracked.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: December 9, 2014
    Assignees: Japan Oil, Gas, and Metals National Corporation, Inpex Corporation, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel & Sumikin Engineering Co., Ltd.
    Inventors: Marie Iwama, Kazuhiko Tasaka, Yuichi Tanaka