Patents by Inventor Kazuhiro Seto

Kazuhiro Seto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953510
    Abstract: A management system including at least one processor, wherein the processor is configured to acquire an image obtained by imaging a sample container containing a sample, recognize relevant information related to reliability of a test result related to the sample based on the image, and derive reliability information indicating the reliability of the test result related to the sample based on the recognized relevant information.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: April 9, 2024
    Assignee: FUJIFILM CORPORATION
    Inventors: Takeya Meguro, Kazuhiro Hirota, Yoshihiro Seto, Kaku Irisawa, Hirotaka Watano, Taiji Iwasaki, Tatsuyuki Denawa, Haruyasu Nakatsugawa
  • Patent number: 11085100
    Abstract: A high strength steel sheet having a high Young's modulus, the steel sheet having a chemical composition including, by mass %, C: 0.060% or more and 0.150% or less, Si: 0.50% or more and 2.20% or less, Mn: 1.00% or more and 3.00% or less, and one or both of Ti: 0.001% or more and 0.200% or less and Nb: 0.001% or more and 0.200% or less, in which the contents of C, N, S, Ti, and Nb satisfy the equation 500?C*?1300. The steel sheet has a microstructure including ferrite in an amount of 20% or more and martensite in an amount of 5% or more, in terms of area ratio, such that the average grain size of the ferrite is 20.0 ?m or less and the inverse intensity ratio of ?-fiber for ?-fiber is 1.00 or more in the ferrite and the martensite.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: August 10, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Hidekazu Minami, Takeshi Yokota, Kazuhiro Seto
  • Patent number: 11035019
    Abstract: A steel sheet has a microstructure that contains ferrite in an area ratio of 20% or more, martensite in an area ratio of 5% or more, and tempered martensite in an area ratio of 5% or more. The ferrite has a mean grain size of 20.0 ?m or less. An inverse intensity ratio of ?-fiber to ?-fiber in the ferrite is 1.00 or more and an inverse intensity ratio of ?-fiber to ?-fiber in the martensite and the tempered martensite is 1.00 or more.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: June 15, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Hidekazu Minami, Shinjiro Kaneko, Takeshi Yokota, Kazuhiro Seto
  • Patent number: 10954578
    Abstract: Disclosed is a steel sheet having a predetermined chemical composition and a steel microstructure that contains, in area ratio, 35% or more and 80% or less of polygonal ferrite and 5% or more and 25% or less of martensite, and that contains, in volume fraction, 8% or more of retained austenite, in which the polygonal ferrite, the martensite, and the retained austenite have a mean grain size of 6 ?m or less, 3 ?m or less, and 3 ?m or less, respectively, and each have a mean grain aspect ratio of 2.0 or less, and in which a value obtained by dividing an Mn content in the retained austenite in mass % by an Mn content in the polygonal ferrite in mass % equals 2.0 or more.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: March 23, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Hiroshi Matsuda, Takeshi Yokota, Takako Yamashita, Kazuhiro Seto
  • Patent number: 10934600
    Abstract: A steel sheet has a microstructure that contains ferrite in an area ratio of 20% or more, martensite in an area ratio of 5% or more, and tempered martensite in an area ratio of 5% or more. The ferrite has a mean grain size of 20.0 ?m or less. An inverse intensity ratio of ?-fiber to ?-fiber in the ferrite is 1.00 or more and an inverse intensity ratio of ?-fiber to ?-fiber in the martensite and the tempered martensite is 1.00 or more.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: March 2, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Hidekazu Minami, Shinjiro Kaneko, Takeshi Yokota, Kazuhiro Seto
  • Patent number: 10711333
    Abstract: Disclosed is a steel sheet having a predetermined chemical composition and a steel microstructure that contains, in area ratio, 15% or more and 55% or less of polygonal ferrite and 15% or more and 30% or less of martensite, and that contains, in volume fraction, 12% or more of retained austenite, in which the polygonal ferrite, the martensite, and the retained austenite have a mean grain size of 4 ?m or less, 2 ?m or less, and 2 ?m or less, respectively, and each have a mean grain aspect ratio of 2.0 or less, and in which a value obtained by dividing an Mn content in the retained austenite in mass % by an Mn content in the polygonal ferrite in mass % equals 2.0 or more.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: July 14, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Hiroshi Matsuda, Takeshi Yokota, Takako Yamashita, Kazuhiro Seto
  • Patent number: 10662495
    Abstract: Disclosed is a high-strength steel sheet having a tensile strength (TS) of 780 MPa or more and excellent in ductility, fatigue properties, stretch flangeability, surface characteristics, and sheet passage ability that can be obtained by providing a predetermined chemical composition and a steel microstructure that contains, by area, 20-50% of ferrite, 5-25% of bainitic ferrite, 1-10% of martensite, and 5-15% of tempered martensite, and that contains, by volume, 10% or more of retained austenite, in which the retained austenite has a mean grain size of 2 ?m or less, a mean Mn content in the retained austenite in mass % is at least 1.2 times the Mn content in the steel sheet in mass %, the retained austenite has a mean free path of 1.2 ?m or less, and the tempered martensite has a mean free path of 1.2 ?m or less.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: May 26, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Hiroshi Matsuda, Kazunori Tahara, Takeshi Yokota, Kaneharu Okuda, Kazuhiro Seto
  • Patent number: 10662496
    Abstract: Disclosed is a high-strength steel sheet having a tensile strength (TS) of 780 MPa or more and excellent in ductility, fatigue properties, balance between high strength and ductility, surface characteristics, and sheet passage ability that can be obtained by providing a predetermined chemical composition and a steel microstructure that contains, by area, 20-50% of ferrite, 5-25% of bainitic ferrite, and 5-20% of martensite, and that contains, by volume, 10% or more of retained austenite, in which the retained austenite has a mean grain size of 2 ?m or less, a mean Mn content in the retained austenite in mass % is at least 1.2 times the Mn content in the steel sheet in mass %, and the retained austenite has a mean free path of 1.2 ?m or less.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: May 26, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Hiroshi Matsuda, Kazunori Tahara, Takeshi Yokota, Kaneharu Okuda, Kazuhiro Seto
  • Patent number: 10626485
    Abstract: A steel having a composition containing C: more than 0.20% and 0.45% or less, Si: 0.50% to 2.50%, Mn: 2.00% or more and less than 3.50%, and one or two selected from Ti: 0.005% to 0.100% and Nb: 0.005% to 0.100% is hot-rolled and cold-rolled. The steel sheet is heated to 800° C. to 950° C. and cooled to a cooling-end temperature of 350° C. to 500° C. at a cooling rate of 5° C./s or more to form a steel sheet having a microstructure including martensite and bainite phases such that the total proportion of the martensite and bainite phases is 80% or more by volume. The steel sheet is heated to 700° C. to 840° C. and maintained at 700° C. to 840° C., cooled to a cooling-end temperature of 350° C. to 500° C. at a cooling rate of 5 to 50° C./s, and maintained within the above temperature range for 10 to 1800 s.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: April 21, 2020
    Assignee: JFE Steel Corporation
    Inventors: Yoshie Obata, Yoshiyasu Kawasaki, Keiji Ueda, Shinjiro Kaneko, Takeshi Yokota, Kazuhiro Seto
  • Patent number: 10570475
    Abstract: Disclosed is a high-strength steel sheet having a predetermined chemical composition, satisfying the condition that Mn content divided by B content equals 2100 or less, and a steel microstructure that contains, by area, 25-80% of ferrite and bainitic ferrite in total, 3-20% of martensite, and that contains, by volume, 10% or more of retained austenite, in which the retained austenite has a mean grain size of 2 ?m or less, a mean Mn content in the retained austenite in mass % is at least 1.2 times the Mn content in the steel sheet in mass %, and an aggregate of retained austenite formed by seven or more identically-oriented retained austenite grains accounts for 60% or more by area of the entire retained austenite.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: February 25, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Hiroshi Matsuda, Yoshie Obata, Shinjiro Kaneko, Takeshi Yokota, Kazuhiro Seto
  • Patent number: 10563279
    Abstract: A high strength steel sheet having a high Young's modulus, the steel sheet having a chemical composition including, by mass %, C: 0.060% or more and 0.150% or less, Si: 0.50% or more and 2.20% or less, Mn: 1.00% or more and 3.00% or less, and one or both of Ti: 0.001% or more and 0.200% or less and Nb: 0.001% or more and 0.200% or less, in which the contents of C, N, S, Ti, and Nb satisfy the equation 500?C*?1300. The steel sheet has a microstructure including ferrite in an amount of 20% or more and martensite in an amount of 5% or more, in terms of area ratio, such that the average grain size of the ferrite is 20.0 ?m or less and the inverse intensity ratio of ?-fiber for ?-fiber is 1.00 or more in the ferrite and the martensite.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: February 18, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Hidekazu Minami, Takeshi Yokota, Kazuhiro Seto
  • Patent number: 10550446
    Abstract: A high-strength steel sheet with excellent formability and high yield ratio that has TS of 980 MPa or more and YR of 68% or more is obtained by providing a predetermined chemical composition and a steel microstructure that contains, in area ratio, 15 to 55% of polygonal ferrite, 8% or more of non-recrystallized ferrite, and 15 to 30% of martensite, and that contains, in volume fraction, 12% or more of retained austenite, in which the polygonal ferrite has a mean grain size of 4 ?m or less, the martensite has a mean grain size of 2 ?m or less, the retained austenite has a mean grain size of 2 ?m or less, and a value obtained by dividing an Mn content in the retained austenite (in mass %) by an Mn content in the polygonal ferrite (in mass %) equals 2.0 or more.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 4, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Hiroshi Matsuda, Takeshi Yokota, Takako Yamashita, Kazuhiro Seto
  • Patent number: 10472697
    Abstract: A steel sheet has a microstructure that contains ferrite in an area ratio of 20% or more, martensite in an area ratio of 5% or more, and tempered martensite in an area ratio of 5% or more. The ferrite has a mean grain size of 20.0 ?m or less. An inverse intensity ratio of ?-fiber to ?-fiber in the ferrite is 1.00 or more and an inverse intensity ratio of ?-fiber to ?-fiber in the martensite and the tempered martensite is 1.00 or more.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: November 12, 2019
    Assignee: JFE STEEL CORPORATION
    Inventors: Hidekazu Minami, Shinjiro Kaneko, Takeshi Yokota, Kazuhiro Seto
  • Publication number: 20190323101
    Abstract: A high strength steel sheet having a high Young's modulus, the steel sheet having a chemical composition including, by mass %, C: 0.060% or more and 0.150% or less, Si: 0.50% or more and 2.20% or less, Mn: 1.00% or more and 3.00% or less, and one or both of Ti: 0.001% or more and 0.200% or less and Nb: 0.001% or more and 0.200% or less, in which the contents of C, N, S, Ti, and Nb satisfy the equation 500?C*?1300. The steel sheet has a microstructure including ferrite in an amount of 20% or more and martensite in an amount of 5% or more, in terms of area ratio, such that the average grain size of the ferrite is 20.0 ?m or less and the inverse intensity ratio of ?-fiber for ?-fiber is 1.00 or more in the ferrite and the martensite.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 24, 2019
    Applicant: JFE STEEL CORPORATION
    Inventors: Hidekazu MINAMI, Takeshi YOKOTA, Kazuhiro SETO
  • Patent number: 10392677
    Abstract: A high-strength hot-pressed part having a specified chemical composition, a microstructure including, in terms of volume fraction, 80% or more of a martensite phase, in a range of 3.0% to 20.0% of a retained austenite phase, a tensile strength TS of 1500 MPa or more, and a uniform elongation uEl of 6.0% or more. A method for manufacturing the high-strength hot-pressed part, the method comprising performing a heating process and a hot press forming process on a raw material steel sheet in order to obtain a hot-pressed part having a specified shape.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: August 27, 2019
    Assignee: JFE STEEL CORPORATION
    Inventors: Koichi Nakagawa, Takeshi Yokota, Kazuhiro Seto
  • Patent number: 10385431
    Abstract: A high strength steel sheet having a high Young's modulus, the steel sheet having a chemical composition including, by mass %, C: 0.060% or more and 0.150% or less, Si: 0.50% or more and 2.20% or less, Mn: 1.00% or more and 3.00% or less, Nb: 0.001% or more and 0.200% or less, and V: 0.001% or more and 0.200% or less, in which the contents of C, Nb, and V satisfy the equation 500?C*?1300. The steel sheet has a microstructure including ferrite in an amount of 20% or more and martensite in an amount of 5% or more, in terms of area ratio, such that the average grain size of the ferrite is 20.0 ?m or less and the inverse intensity ratio of ?-fiber for ?-fiber is 1.00 or more in each of the ferrite and the martensite.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: August 20, 2019
    Assignee: JFE STEEL CORPORATION
    Inventors: Hidekazu Minami, Takeshi Yokota, Kazuhiro Seto
  • Publication number: 20190093191
    Abstract: A hot pressed member having all of: high strength of 1500 MPa or more in tensile strength TS; high ductility of 6.0% or more in uniform elongation uEl; and excellent heat treatment hardenability of increasing in yield stress YS by 150 MPa or more when subjected to heat treatment (baking finish) is provided. A hot pressed member comprises: a predetermined chemical composition (in particular, low C of 0.090% or more and less than 0.30% and high Mn of 3.5% or more and less than 11.0%); a microstructure including a martensite phase of 70.0% or more in volume fraction and a retained austenite phase of 3.0% or more and 30.0% or less in volume fraction; and a dislocation density of 1.0×1016/m2 or more.
    Type: Application
    Filed: October 3, 2016
    Publication date: March 28, 2019
    Applicant: JFE STEEL CORPORATION
    Inventors: Koichi NAKAGAWA, Shinjiro KANEKO, Takeshi YOKOTA, Kazuhiro SETO
  • Publication number: 20180305785
    Abstract: A hot pressed member comprises: a predetermined chemical composition (in particular, low C of 0.090% or more and less than 0.30% and high Mn of 3.5% or more and less than 11.0%); a first region having: a microstructure including a martensite phase of 80.0% or more in volume fraction and a retained austenite phase of 3.0% or more and 20.0% or less in volume fraction; and a dislocation density of 1.0×1016/m2 or more; and a second region having a microstructure including a ferrite phase of 30.0% or more and 60.0% or less in volume fraction, a retained austenite phase of 10.0% or more and 70.0% or less in volume fraction, and a martensite phase of 30.0% or less in volume fraction.
    Type: Application
    Filed: October 3, 2016
    Publication date: October 25, 2018
    Applicant: JFE STEEL CORPORATION
    Inventors: Koichi NAKAGAWA, Shinjiro KANEKO, Takeshi YOKOTA, Kazuhiro SETO
  • Publication number: 20180195143
    Abstract: This disclosure provides a high-strength thin steel sheet excellent in both tensile strength and elongation with small elongation anisotropy. The high-strength thin steel sheet has a specific chemical composition and a microstructure where a total area ratio of ferrite, tempered bainitic ferrite and bainitic ferrite is 40% or more and 70% or less, an area ratio of martensite is 5% or more and 30% or less, an area ratio of retained austenite is 10% or more and 35% or less, an average equivalent circular diameter of martensite and retained austenite (secondary phase) grains is 2.0 ?m or less, an area ratio of secondary phase grains having an equivalent circular diameter of 2.0 ?m or more is 10% or less, and an average minor axis length of secondary phase grains is 0.40 ?m or less.
    Type: Application
    Filed: August 26, 2016
    Publication date: July 12, 2018
    Applicant: JFE STEEL CORPORATION
    Inventors: Fusae SHIIMORI, Yoshiyasu KAWASAKI, Shinjiro KANEKO, Takeshi YOKOTA, Kazuhiro SETO, Takaaki TANAKA, Yuki TOJI
  • Publication number: 20180179610
    Abstract: A steel sheet has a microstructure that contains ferrite in an area ratio of 20% or more, martensite in an area ratio of 5% or more, and tempered martensite in an area ratio of 5% or more. The ferrite has a mean grain size of 20.0 ?m or less. An inverse intensity ratio of ?-fiber to ?-fiber in the ferrite is 1.00 or more and an inverse intensity ratio of ?-fiber to ?-fiber in the martensite and the tempered martensite is 1.00 or more.
    Type: Application
    Filed: January 27, 2016
    Publication date: June 28, 2018
    Applicant: JFE STEEL CORPORATION
    Inventors: Hidekazu MINAMI, Shinjiro KANEKO, Takeshi YOKOTA, Kazuhiro SETO