Patents by Inventor Kazuhito Takei

Kazuhito Takei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11611395
    Abstract: First compensation circuitry includes a first digital filter compensating a phase difference between a phase of a symbol of a received signal and a sampling timing, and first filter coefficient calculation circuitry calculating a filter coefficient of the first digital filter as a first filter coefficient. Second filter coefficient calculation circuitry calculates, as a second filter coefficient, a filter coefficient for adaptive equalization that compensates distortion due to temporally changing polarization dispersion, based on an output of the first digital filter. Coefficient combination circuitry combines the first filter coefficient and the second filter coefficient. Second compensation circuitry includes a second digital filter which uses a filter coefficient combined by the coefficient combination circuitry and performs a compensation of the phase difference between the phase of the symbol of the received signal and the sampling timing, and a process of the adaptive equalization at the same time.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: March 21, 2023
    Assignee: NTT ELECTRONICS CORPORATION
    Inventors: Tomohiro Takamuku, Mitsuteru Yoshida, Tsutomu Takeya, Kazuhito Takei, Katsuichi Oyama, Tomoharu Semboku
  • Patent number: 11494165
    Abstract: An arithmetic circuit includes a LUT generation circuit (1) that, when coefficients c[n] (n=1, . . . , N) are paired two by two, outputs a value calculated for each of the pairs, and distributed arithmetic circuits (2-m) that calculate values z[m] that are sums of products of data x[m, n] of a data set X[m] containing M pairs of data x[m, n] and the coefficients c[n], in parallel for each of the M pairs. The distributed arithmetic circuit (2-m) includes binomial distributed arithmetic circuits that, for each of the pairs, calculate sums of products of a value obtained by pairing N data x[m, n] corresponding to the circuit two by two and a value obtained by pairing the coefficients c[n] two by two, and a figure matching circuit that matches a number of decimal figures of the sums with a predetermined number of decimal figures.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: November 8, 2022
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Kenji Kawai, Ryo Awata, Kazuhito Takei, Masaaki Iizuka
  • Patent number: 11360741
    Abstract: An arithmetic circuit includes an LUT generation circuit (1) that, when coefficients c[n] (n=1, . . . , N) are paired two by two, outputs a value calculated for each of the pairs, and a distributed arithmetic circuit (2-m) that calculates values y[m] of product-sum arithmetic, by which data x[m, n] of a data set X[m] containing M pairs of data x[m, n] is multiplied by the coefficients c[n] and the products are summed up, in parallel for each of the M pairs.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: June 14, 2022
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Kenji Kawai, Ryo Awata, Kazuhito Takei, Masaaki Iizuka
  • Publication number: 20220100472
    Abstract: An arithmetic circuit includes an LUT generation circuit (1) that, when coefficients c[n] (n=1, . . . , N) are paired two by two, outputs a value calculated for each of the pairs, and a distributed arithmetic circuit (2-m) that calculates values y[m] of product-sum arithmetic, by which data x[m, n] of a data set X[m] containing M pairs of data x[m, n] is multiplied by the coefficients c[n] and the products are summed up, in parallel for each of the M pairs.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Inventors: Kenji KAWAI, Ryo AWATA, Kazuhito TAKEI, Masaaki IIZUKA
  • Publication number: 20210344424
    Abstract: First compensation circuitry includes a first digital filter compensating a phase difference between a phase of a symbol of a received signal and a sampling timing, and first filter coefficient calculation circuitry calculating a filter coefficient of the first digital filter as a first filter coefficient. Second filter coefficient calculation circuitry calculates, as a second filter coefficient, a filter coefficient for adaptive equalization that compensates distortion due to temporally changing polarization dispersion, based on an output of the first digital filter. Coefficient combination circuitry combines the first filter coefficient and the second filter coefficient. Second compensation circuitry includes a second digital filter which uses a filter coefficient combined by the coefficient combination circuitry and performs a compensation of the phase difference between the phase of the symbol of the received signal and the sampling timing, and a process of the adaptive equalization at the same time.
    Type: Application
    Filed: October 7, 2019
    Publication date: November 4, 2021
    Applicant: NTT Electronics Corporation
    Inventors: Tomohiro TAKAMUKU, Mitsuteru YOSHIDA, Tsutomu TAKEYA, Kazuhito TAKEI, Katsuichi OYAMA, Tomoharu SEMBOKU
  • Publication number: 20210064342
    Abstract: An arithmetic circuit includes an LUT generation circuit (1) that, when coefficients c[n] (n=1, . . . , N) are paired two by two, outputs a value calculated for each of the pairs, and a distributed arithmetic circuit (2-m) that calculates values y[m] of product-sum arithmetic, by which data x[m, n] of a data set X[m] containing M pairs of data x[m, n] is multiplied by the coefficients c[n] and the products are summed up, in parallel for each of the M pairs.
    Type: Application
    Filed: December 18, 2018
    Publication date: March 4, 2021
    Inventors: Kenji KAWAI, Ryo AWATA, Kazuhito TAKEI, Masaaki IIZUKA
  • Publication number: 20210064340
    Abstract: An arithmetic circuit includes an LUT generation circuit (1) that, when coefficients c[n] (n=1, . . . , N) are paired two by two, outputs a value calculated for each of the pairs, and distributed arithmetic circuits (2-m) that calculate values z[m] of product-sum arithmetic, by which data x[m, n] of a data set X[m] containing M pairs of data x[m, n] are multiplied by the coefficients c[n] and the products are summed up, in parallel for each of the M pairs.
    Type: Application
    Filed: December 18, 2018
    Publication date: March 4, 2021
    Inventors: Kenji KAWAI, Ryo AWATA, Kazuhito TAKEI, Masaaki IIZUKA
  • Patent number: 10685095
    Abstract: A processing equipment includes a processing unit having a plurality of functions. A retaining unit retains a device identifier capable of identifying the processing equipment. An interface unit receives a function authentication key which is a code for setting a specific function among the plurality of functions to be enabled or disabled. A control unit sets the specific function to be enabled or disabled according to the function authentication key when a device identifier included in the received function authentication key coincides with the device identifier retained in the retaining unit.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: June 16, 2020
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Etsushi Yamazaki, Osamu Ishida, Kazuhito Takei, Yasuhiro Suzuki, Hideki Nishizawa
  • Patent number: 10608743
    Abstract: A reception circuit includes a first adaptive compensator compensating distortion of a received signal. An adaptive compensation coefficient calculator includes a known-signal detector detecting first and second known-signals from the received signal, a second adaptive compensator compensating distortion of the received signal, a tap coefficient initial value calculator calculating an initial value of a tap coefficient of the second adaptive compensator by comparing the first known-signal with its true value, a first phase shift compensator compensating phase shift of an output of the second adaptive compensator using the second known-signal, and a tap coefficient calculator calculating tap coefficients of the first and second adaptive compensators by comparing at least one of the first and second known-signals compensated by the second adaptive compensator and the first phase shift compensator with its true value.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: March 31, 2020
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomohiro Takamuku, Etsushi Yamazaki, Katsuichi Oyama, Yasuharu Onuma, Kazuhito Takei, Masanori Nakamura, Mitsuteru Yoshida, Masahito Tomizawa, Yoshiaki Kisaka
  • Patent number: 10419127
    Abstract: A symbol phase difference compensating portion (6) calculates a first phase difference which is a phase difference between a known pattern extracted from a received signal and a true value of the known pattern and performs phase compensation for the received signal based on the first phase difference. A tentative determination portion (12) tentatively determines an output signal of the symbol phase difference compensating portion (6) to acquire an estimated value of a phase. A first phase difference acquiring portion (13) acquires a second phase difference which is a phase difference between a phase of the output signal and the estimated value of the phase acquired by the tentative determination portion (12). A first phase difference compensating portion (14) performs phase compensation for the output signal based on the second phase difference.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: September 17, 2019
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Etsushi Yamazaki, Hiroyukl Nouchi, Yasuharu Onuma, Tomohiro Takamuku, Katsuichi Oyama, Kazuhito Takei, Masahito Tomizawa, Yoshiaki Kisaka, Mltsuteru Yoshida, Masanori Nakamura
  • Patent number: 10374718
    Abstract: An I component compensation unit calculates an I component in which a distortion has been compensated, by forming a first polynomial expressing the distortion of the I component based on an I component and a Q component of a quadrature modulation signal and multiplying each term of the first polynomial by a first coefficient. A Q component compensation unit calculates a Q component in which a distortion has been compensated, by forming a second polynomial expressing the distortion of the Q component based on the I component and the Q component of the quadrature modulation signal and multiplying each term of the second polynomial by a second coefficient. A coefficient calculation unit calculates the first and second coefficients by comparing outputs of the I component compensation unit and the Q component compensation unit and a known signal.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: August 6, 2019
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yasuharu Onuma, Etsushi Yamazaki, Hiroyuki Nouchi, Tomohiro Takamuku, Katsuichi Oyama, Kazuhito Takei, Masanori Nakamura, Mitsuteru Yoshida, Masahito Tomizawa
  • Patent number: 10305675
    Abstract: An FIR filter convolutes sampled data obtained by sampling a reception signal with tap coefficients. A phase difference detector detects a phase difference between a synchronization timing of a signal waveform estimated from an output signal of the FIR filter and a sampling timing of the output signal. A tap coefficient adjuster adjusts the tap coefficients so as to reduce the phase difference detected by the phase difference detector and causes the sampling timing of the output signal of the FIR filter to track the synchronization timing.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: May 28, 2019
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yasuharu Onuma, Masahiro Tachibana, Etsushi Yamazaki, Kazuhito Takei, Yuki Yoshida, Masayuki Ikeda, Yoshiaki Kisaka, Masahito Tomizawa
  • Publication number: 20190132051
    Abstract: An I component compensation unit calculates an I component in which a distortion has been compensated, by forming a first polynomial expressing the distortion of the I component based on an I component and a Q component of a quadrature modulation signal and multiplying each term of the first polynomial by a first coefficient. A Q component compensation unit calculates a Q component in which a distortion has been compensated, by forming a second polynomial expressing the distortion of the Q component based on the I component and the Q component of the quadrature modulation signal and multiplying each term of the second polynomial by a second coefficient. A coefficient calculation unit calculates the first and second coefficients by comparing outputs of the I component compensation unit and the Q component compensation unit and a known signal.
    Type: Application
    Filed: June 21, 2017
    Publication date: May 2, 2019
    Inventors: Yasuharu ONUMA, Etsushi YAMAZAKI, Hiroyuki NOUCHI, Tomohiro TAKAMUKU, Katsuichi OYAMA, Kazuhito TAKEI, Masanori NAKAMURA, Mitsuteru YOSHIDA, Masahito TOMIZAWA
  • Publication number: 20190074909
    Abstract: A symbol phase difference compensating portion (6) calculates a first phase difference which is a phase difference between a known pattern extracted from a received signal and a true value of the known pattern and performs phase compensation for the received signal based on the first phase difference. A tentative determination portion (12) tentatively determines an output signal of the symbol phase difference compensating portion (6) to acquire an estimated value of a phase. A first phase difference acquiring portion (13) acquires a second phase difference which is a phase difference between a phase of the output signal and the estimated value of the phase acquired by the tentative determination portion (12). A first phase difference compensating portion (14) performs phase compensation for the output signal based on the second phase difference.
    Type: Application
    Filed: April 13, 2017
    Publication date: March 7, 2019
    Inventors: Etsushi YAMAZAKI, Hiroyukl NOUCHI, Yasuharu ONUMA, Tomohiro TAKAMUKU, Katsuichi OYAMA, Kazuhito TAKEI, Masahito TOMIZAWA, Yoshiaki KISAKA, Mltsuteru YOSHIDA, Masanori NAKAMURA
  • Publication number: 20190074903
    Abstract: A reception circuit includes a first adaptive compensator compensating distortion of a received signal. An adaptive compensation coefficient calculator includes a known-signal detector detecting first and second known-signals from the received signal, a second adaptive compensator compensating distortion of the received signal, a tap coefficient initial value calculator calculating an initial value of a tap coefficient of the second adaptive compensator by comparing the first known-signal with its true value, a first phase shift compensator compensating phase shift of an output of the second adaptive compensator using the second known-signal, and a tap coefficient calculator calculating tap coefficients of the first and second adaptive compensators by comparing at least one of the first and second known-signals compensated by the second adaptive compensator and the first phase shift compensator with its true value.
    Type: Application
    Filed: May 26, 2017
    Publication date: March 7, 2019
    Inventors: Tomohiro TAKAMUKU, Etsushi YAMAZAKI, Katsuichi OYAMA, Yasuharu ONUMA, Kazuhito TAKEI, Masanori NAKAMURA, Mitsuteru YOSHIDA, Masahito TOMIZAWA, Yoshiaki KISAKA
  • Patent number: 10128818
    Abstract: A parallel transfer rate converter inputs first parallel data with number of samples being S1 pieces in synchronism with a first clock, and outputs second parallel data with number of samples being S2=S1×(m/p) pieces (p is an integer equal to or larger than 1) in synchronism with a second clock having a frequency which is p/m times of a frequency of the first clock. A convolution operation device inputs the second parallel data in synchronism with the second clock, generates third parallel data with number of samples being S3=S2×(n/m) pieces (S3 is an integer equal to or larger than 1) by executing a convolution operation with a coefficient indicating a transmission characteristic to the second parallel data, and outputs the third parallel data in synchronism with the second clock.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: November 13, 2018
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yasuharu Onuma, Etsushi Yamazaki, Kazuhito Takei, Osamu Ishida, Kengo Horikoshi, Mitsuteru Yoshida, Yoshiaki Kisaka, Masahito Tomizawa
  • Patent number: 10122465
    Abstract: Signal processing sections selectively switch modulation/demodulation in low-efficiency modulation system and modulation/demodulation in high-efficiency modulation system, and perform digital signal processing. Parallel-side interfaces of input/output interface sections are electrically connected to the signal processing section. A serial-side interface of the input/output interface section is electrically connected to a serial-side interface of the input/output interface section. A selection section electrically connects a parallel-side interface of the input/output interface section to the signal processing section when the low-efficiency modulation system is selected, and electrically connects the parallel-side interface of the input/output interface section to a parallel-side interface of the input/output interface section when the high-efficiency modulation system is selected.
    Type: Grant
    Filed: September 5, 2016
    Date of Patent: November 6, 2018
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Osamu Ishida, Etsushi Yamazaki, Kazuhito Takei, Masahito Tomizawa, Hideki Nishizawa
  • Publication number: 20180302211
    Abstract: An FIR filter convolutes sampled data obtained by sampling a reception signal with tap coefficients. A phase difference detector detects a phase difference between a synchronization timing of a signal waveform estimated from an output signal of the FIR filter and a sampling timing of the output signal. A tap coefficient adjuster adjusts the tap coefficients so as to reduce the phase difference detected by the phase difference detector and causes the sampling timing of the output signal of the FIR filter to track the synchronization timing.
    Type: Application
    Filed: January 16, 2017
    Publication date: October 18, 2018
    Inventors: Yasuharu ONUMA, Masahiro TACHIBANA, Etsushi YAMAZAKI, Kazuhito TAKEI, Yuki YOSHIDA, Masayuki IKEDA, Yoshiaki KISAKA, Masahito TOMIZAWA
  • Publication number: 20180175830
    Abstract: A parallel transfer rate converter inputs first parallel data with number of samples being S1 pieces in synchronism with a first clock, and outputs second parallel data with number of samples being S2=S1×(m/p) pieces (p is an integer equal to or larger than 1) in synchronism with a second clock having a frequency which is p/m times of a frequency of the first clock. A convolution operation device inputs the second parallel data in synchronism with the second clock, generates third parallel data with number of samples being S3=S2×(n/m) pieces (S3 is an integer equal to or larger than 1) by executing a convolution operation with a coefficient indicating a transmission characteristic to the second parallel data, and outputs the third parallel data in synchronism with the second clock.
    Type: Application
    Filed: January 16, 2017
    Publication date: June 21, 2018
    Inventors: Yasuharu ONUMA, Etsushi YAMAZAKI, Kazuhito TAKEI, Osamu ISHIDA, Kengo HORIKOSHI, Mitsuteru YOSHIDA, Yoshiaki KISAKA, Masahito TOMIZAWA
  • Publication number: 20180152247
    Abstract: Signal processing sections selectively switch modulation/demodulation in low-efficiency modulation system and modulation/demodulation in high-efficiency modulation system, and perform digital signal processing. Parallel-side interfaces of input/output interface sections are electrically connected to the signal processing section. A serial-side interface of the input/output interface section is electrically connected to a serial-side interface of the input/output interface section. A selection section electrically connects a parallel-side interface of the input/output interface section to the signal processing section when the low-efficiency modulation system is selected, and electrically connects the parallel-side interface of the input/output interface section to a parallel-side interface of the input/output interface section when the high-efficiency modulation system is selected.
    Type: Application
    Filed: September 5, 2016
    Publication date: May 31, 2018
    Inventors: Osamu ISHIDA, Etsushi YAMAZAKI, Kazuhito TAKEI, Masahito TOMIZAWA, Hideki NISHIZAWA