Patents by Inventor Kazuo Yudoh

Kazuo Yudoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8440893
    Abstract: When C60 was added to synovial fibroblasts, infiltrating lymphocytes, and macrophages, and the inflammatory cytokine production level was measured, the inflammatory cytokine production level was significantly suppressed in all cells. Furthermore, when C60 was added to osteoclast precursor cells and cultured in the presence of osteoclast differentiation-inducing factors, a certain concentration or more of C60 suppressed their differentiation into osteoclasts. Observation of the effect of C60 addition on bone resorption showed that C60 suppressed bone resorption by osteoclasts. In addition, the use of arthritis model animals confirmed in vivo that C60 suppressed inflammatory symptoms, as well as bone resorption and bone destruction by osteoclasts. C60 is effective for treating arthritic diseases such as rheumatoid arthritis through its effects of suppressing osteoclast differentiation, bone resorption, and inflammatory cytokines.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: May 14, 2013
    Assignees: St. Marianna University School of Medicine, Mitsubishi Corporaion
    Inventor: Kazuo Yudoh
  • Patent number: 8395037
    Abstract: Fullerene inhibited the decrease in cell proliferation ability of chondrocytes which is observed when cultured chondrocytes are treated with a cartilage degenerating factor (IL-1? or H2O2). Fullerene inhibited production of cartilage matrix-degrading enzymes (matrix metalloprotease (MMP)-1, 3 and 13) which is induced in cultured chondrocytes by cartilage degenerating factors. Fullerene restored the decrease in cartilage matrix (proteoglycan) synthesizing ability which is observed in treating cultured chondrocytes with cartilage degenerating factors. In an analysis using an osteoarthritis rabbit model, the progress of cartilage degeneration was reduced by administering fullerene. Moreover, the dynamic friction coefficient was decreased by adding fullerene to synovial fluid.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: March 12, 2013
    Assignees: Mitsubishi Corporation, St. Marianna University School of Medicine
    Inventor: Kazuo Yudoh
  • Publication number: 20100040599
    Abstract: When C60 was added to synovial fibroblasts, infiltrating lymphocytes, and macrophages, and the inflammatory cytokine production level was measured, the inflammatory cytokine production level was significantly suppressed in all cells. Furthermore, when C60 was added to osteoclast precursor cells and cultured in the presence of osteoclast differentiation-inducing factors, a certain concentration or more of C60 suppressed their differentiation into osteoclasts. Observation of the effect of C60 addition on bone resorption showed that C60 suppressed bone resorption by osteoclasts. In addition, the use of arthritis model animals confirmed in vivo that C60 suppressed inflammatory symptoms, as well as bone resorption and bone destruction by osteoclasts. C60 is effective for treating arthritic diseases such as rheumatoid arthritis through its effects of suppressing osteoclast differentiation, bone resorption, and inflammatory cytokines.
    Type: Application
    Filed: October 18, 2007
    Publication date: February 18, 2010
    Applicant: St. Marianna University School of Medicine
    Inventor: Kazuo Yudoh
  • Publication number: 20090311221
    Abstract: It was examined whether a cartilage-like tissue is formed under various reaction conditions using cartilage matrix components: glycosaminoglycan, proteoglycan, and collagen. The present inventors have discovered that proteoglycan bound to glycosaminoglycan through self-organization form an aggregate when the glycosaminoglycan was reacted with proteoglycan under specific concentrations and pH, and that a mesh structure composed of collagen fibers was constructed through self-organization using the aggregates as a skeleton when the aggregates were reacted with collagen molecules.
    Type: Application
    Filed: September 13, 2006
    Publication date: December 17, 2009
    Applicant: St. Marianna University, School of Medicine
    Inventor: Kazuo Yudoh
  • Publication number: 20090104280
    Abstract: Fullerene inhibited the decrease in cell proliferation ability of chondrocytes which is observed when cultured chondrocytes are treated with a cartilage degenerating factor (IL-1? or H2O2). Fullerene inhibited production of cartilage matrix-degrading enzymes (matrix metalloprotease (MMP)-1, 3 and 13) which is induced in cultured chondrocytes by cartilage degenerating factors. Fullerene restored the decrease in cartilage matrix (proteoglycan) synthesizing ability which is observed in treating cultured chondrocytes with cartilage degenerating factors. In an analysis using an osteoarthritis rabbit model, the progress of cartilage degeneration was reduced by administering fullerene. Moreover, the dynamic friction coefficient was decreased by adding fullerene to synovial fluid.
    Type: Application
    Filed: March 23, 2006
    Publication date: April 23, 2009
    Applicant: ST. MARIANNA UNIVERSITY, SCHOOL OF MEDICINE
    Inventor: Kazuo Yudoh