Patents by Inventor Kazuto Kawakami

Kazuto Kawakami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10533242
    Abstract: A steel contains, in a chemical composition, C, Si, Mn, and Al, and contains pearlite as a metallographic structure, and a value obtained by dividing an Mn content in a cementite in the pearlite in terms of at % by an Mn content in a ferrite in the pearlite in terms of at % is higher than 0 and equal to or lower than 5.0.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: January 14, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takahiko Kohtake, Kazuto Kawakami, Makoto Okonogi
  • Publication number: 20170114434
    Abstract: A steel contains, in a chemical composition, C, Si, Mn, and Al, and contains pearlite as a metallographic structure, and a value obtained by dividing an Mn content in a cementite in the pearlite in terms of at % by an Mn content in a ferrite in the pearlite in terms of at % is higher than 0 and equal to or lower than 5.0.
    Type: Application
    Filed: June 13, 2014
    Publication date: April 27, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takahiko KOHTAKE, Kazuto KAWAKAMI, Makoto OKONOGI
  • Patent number: 9595376
    Abstract: A non-oriented electrical steel sheet comprising, Si: not less than 1.0 mass % nor more than 3.5 mass %, Al: not less than 0.1 mass % nor more than 3.0 mass %, Ti: not less than 0.001 mass % nor more than 0.01 mass %, Bi: not less than 0.001 mass % nor more than 0.01 mass %, wherein Expression (1) is satisfied when a Ti content (mass %) is represented as [Ti] and a Bi content (mass %) is represented as [Bi]: [Ti]?0.8×[Bi]+0.002 . . . (1).
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: March 14, 2017
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masafumi Miyazaki, Hideaki Yamamura, Takeshi Kubota, Yousuke Kurosaki, Kazuto Kawakami, Kazumi Mizukami, Takeaki Wakisaka
  • Publication number: 20150279531
    Abstract: A non-oriented electrical steel sheet comprising, Si: not less than 1.0 mass % nor more than 3.5 mass %, Al: not less than 0.1 mass % nor more than 3.0 mass %, Ti: not less than 0.001 mass % nor more than 0.01 mass %, Bi: not less than 0.001 mass % nor more than 0.01 mass %, wherein Expression (1) is satisfied when a Ti content (mass %) is represented as [Ti] and a Bi content (mass %) is represented as [Bi]: [Ti]?0.8×[Bi]+0.002 . . . (1).
    Type: Application
    Filed: June 16, 2015
    Publication date: October 1, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masafumi MIYAZAKI, Hideaki YAMAMURA, Takeshi KUBOTA, Yousuke KUROSAKI, Kazuto KAWAKAMI, Kazumi MIZUKAMI, Takeaki WAKISAKA
  • Patent number: 9085817
    Abstract: In a non-oriented electrical steel sheet, Si: not less than 1.0 mass % nor more than 3.5 mass %, Al: not less than 0.1 mass % nor more than 3.0 mass %, Ti: not less than 0.001 mass % nor more than 0.01 mass %, Bi: not less than 0.001 mass % nor more than 0.01 mass %, and so on are contained. (1) expression described below is satisfied when a Ti content (mass %) is represented as [Ti] and a Bi content (mass %) is represented as [Bi]. [Ti]?0.8×[Bi]+0.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: July 21, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masafumi Miyazaki, Hideaki Yamamura, Takeshi Kubota, Yousuke Kurosaki, Kazuto Kawakami, Kazumi Mizukami, Takeaki Wakisaka
  • Patent number: 8840734
    Abstract: A non-oriented electrical steel sheet, containing: C: 0.01 mass % or less; Si: 1.0 mass % or more and 3.5 mass % or less; Al: 0.1 mass % or more and 3.0 mass % or less; Mn: 0.1 mass % or more and 2.0 mass % or less; P: 0.1 mass % or less; S: 0.005 mass % or less; Ti: 0.001 mass % or more and 0.01 mass % or less; N: 0.005 mass % or less; and Y: more than 0.05 mass % and 0.2 mass % or less, with the balance being iron and inevitable impurities.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: September 23, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masafumi Miyazaki, Hideaki Yamamura, Kazuto Kawakami
  • Publication number: 20140072471
    Abstract: A non-oriented electrical steel sheet, containing: C: 0.01 mass % or less; Si: 1.0 mass % or more and 3.5 mass % or less; Al: 0.1 mass % or more and 3.0 mass % or less; Mn: 0.1 mass % or more and 2.0 mass % or less; P: 0.1 mass % or less; S: 0.005 mass % or less; Ti: 0.001 mass % or more and 0.01 mass % or less; N: 0.005 mass % or less; and Y: more than 0.05 mass % and 0.2 mass % or less, with the balance being iron and inevitable impurities.
    Type: Application
    Filed: February 5, 2013
    Publication date: March 13, 2014
    Inventors: Masafumi Miyazaki, Hideaki Yamamura, Kazuto Kawakami
  • Patent number: 8567233
    Abstract: A gas charge container includes a sample holder which holds a needle-shaped material, a deutrium gas supply portion which charges a deutrium gas into the needle-shaped material held by the sample holder, and a heating portion which heats the needle-shaped material held by the sample holder. The needle-shaped material is cooled by blocking the heat generated by the heating portion after the needle-shaped material is heated by the heating portion.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: October 29, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Jun Takahashi, Kazuto Kawakami, Haruo Ohmori
  • Patent number: 8562906
    Abstract: A lead-free solder alloy exhibiting good performance in impact resistance and vibration resistance. Also provided are a solder ball using such a lead-free solder alloy, and an electronic member having a solder bump using such a lead-free alloy. Specifically, the lead-free solder alloy consists of 1.0 to 2.0% by mass of Ag, 0.3 to 1.0% by mass of Cu, 0.005 to 0.1% by mass of Ni and the balance including Sn and unavoidable impurities. In an Sn—Ag—Cu based solder joint portion on a Cu electrode, a Cu3Sn intermetallic compound layer is formed directly on the Cu electrode, and then a Cu6Sn5 intermetallic compound layer is formed thereon. A Cu atomic site in the Cu6Sn5 intermetallic compound layer is replaced by Ni having a smaller atomic radius than Cu to thereby reduce strain in the Cu6Sn5 intermetallic compound layer, thus enabling impact resistance and vibration resistance to be improved therein.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: October 22, 2013
    Assignees: Nippon Steel & Sumikin Materials Co., Ltd., Nippon Micrometal Corporation
    Inventors: Masamoto Tanaka, Tsutomu Sasaki, Takayuki Kobayashi, Kazuto Kawakami, Masayoshi Fujishima
  • Patent number: 8304141
    Abstract: The present invention releases a method of producing a metal separator for a solid polymer fuel cell by stainless steel, titanium, or titanium alloy during which securing lower cost and mass producibility by using a material having a high workability to form a complicated shape by a high productivity, then using an inexpensive blast process to drive a conductive substance into the surface of the metal separator member, that is, provides a stainless steel, titanium, or titanium alloy solid polymer fuel cell separator comprised of stainless steel, titanium, or titanium alloy in the surface of which a low ion release conductive substance is buried, having an arithmetic mean roughness (Ra) of the separator surface of 0.5 to 5.0 ?m, having a 10-point mean roughness (Rz) of 3 to 20 ?m, having an average spacing of surface relief shapes (Sm) of 300 ?m or less, having values of a warp rate and twist rate of a separator of 0.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 6, 2012
    Assignee: Sintokogio Ltd.
    Inventors: Hiroshi Kihira, Michio Kaneko, Mitsuharu Yamagata, Koki Tanaka, Yoichi Ikematsu, Yoichi Matsuzaki, Kazuto Kawakami, Wataru Hisada, Suguru Suzuki
  • Publication number: 20120014828
    Abstract: In a non-oriented electrical steel sheet, Si: not less than 1.0 mass % nor more than 3.5 mass %, Al: not less than 0.1 mass % nor more than 3.0 mass %, Ti: not less than 0.001 mass % nor more than 0.01 mass %, Bi: not less than 0.001 mass % nor more than 0.01 mass %, and so on are contained. (1) expression described below is satisfied when a Ti content (mass %) is represented as [Ti] and a Bi content (mass %) is represented as [Bi]. [Ti]?0.8×[Bi]+0.
    Type: Application
    Filed: May 25, 2010
    Publication date: January 19, 2012
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Masafumi Miyazaki, Hideaki Yamamura, Takeshi Kubota, Yousuke Kurosaki, Kazuto Kawakami, Kazumi Mizukami, Takeaki Wakisaki
  • Publication number: 20110113858
    Abstract: A gas charge container includes a sample holder which holds a needle-shaped material, a deutrium gas supply portion which charges a deutrium gas into the needle-shaped material held by the sample holder, and a heating portion which heats the needle-shaped material held by the sample holder. The needle-shaped material is cooled by blocking the heat generated by the heating portion after the needle-shaped material is heated by the heating portion.
    Type: Application
    Filed: June 24, 2009
    Publication date: May 19, 2011
    Inventors: Jun Takahashi, Kazuto Kawakami, Haruo Ohmori
  • Publication number: 20110032537
    Abstract: The present invention releases a method of producing a metal separator for a solid polymer fuel cell by stainless steel, titanium, or titanium alloy during which securing lower cost and mass producibility by using a material having a high workability to form a complicated shape by a high productivity, then using an inexpensive blast process to drive a conductive substance into the surface of the metal separator member, that is, provides a stainless steel, titanium, or titanium alloy solid polymer fuel cell separator comprised of stainless steel, titanium, or titanium alloy in the surface of which a low ion release conductive substance is buried, having an arithmetic mean roughness (Ra) of the separator surface of 0.5 to 5.0 ?m, having a 10-point mean roughness (Rz) of 3 to 20 ?m, having an average spacing of surface relief shapes (Sm) of 300 ?m or less, having values of a warp rate and twist rate of a separator of 0.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 10, 2011
    Applicants: NIPPON STEEL CORPORATION, SINTOBRATOR, LTD.
    Inventors: Hiroshi Kihira, Michio Kaneko, Mitsuharu Yamagata, Koki Tanaka, Yoichi Ikematsu, Yoichi Matsuzaki, Kazuto Kawakami, Wataru Hisada, Suguru Suzuki
  • Patent number: 7807281
    Abstract: The present invention releases a method of producing a metal separator for a solid polymer fuel cell by stainless steel, titanium, or titanium alloy during which securing lower cost and mass producibility by using a material having a high workability to form a complicated shape by a high productivity, then using an inexpensive blast process to drive a conductive substance into the surface of the metal separator member, that is, provides a stainless steel, titanium, or titanium alloy solid polymer fuel cell separator comprised of stainless steel, titanium, or titanium alloy in the surface of which a low ion release conductive substance is buried, having an arithmetic mean roughness (Ra) of the separator surface of 0.5 to 5.0 ?m, having a 10-point mean roughness (Rz) of 3 to 20 ?m, having an average spacing of surface relief shapes (Sm) of 300 ?m or less, having values of a warp rate and twist rate of a separator of 0.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: October 5, 2010
    Assignees: Nippon Steel Corporation, Sintokogio Ltd.
    Inventors: Hiroshi Kihira, Michio Kaneko, Mitsuharu Yamagata, Koki Tanaka, Yoichi Ikematsu, Yoichi Matsuzaki, Kazuto Kawakami, Wataru Hisada, Suguru Suzuki
  • Publication number: 20090304545
    Abstract: A lead-free solder alloy exhibiting good performance in impact resistance and vibration resistance. Also provided are a solder ball using such a lead-free solder alloy, and an electronic member having a solder bump using such a lead-free alloy. Specifically, the lead-free solder alloy consists of 1.0 to 2.0% by mass of Ag, 0.3 to 1.0% by mass of Cu, 0.005 to 0.1% by mass of Ni and the balance including Sn and unavoidable impurities. In an Sn—Ag—Cu based solder joint portion on a Cu electrode, a Cu3Sn intermetallic compound layer is formed directly on the Cu electrode, and then a Cu6Sn5 intermetallic compound layer is formed thereon. A Cu atomic site in the Cu6Sn5 intermetallic compound layer is replaced by Ni having a smaller atomic radius than Cu to thereby reduce strain in the Cu6Sn5 intermetallic compound layer, thus enabling impact resistance and vibration resistance to be improved therein.
    Type: Application
    Filed: March 8, 2007
    Publication date: December 10, 2009
    Applicants: NIPPON STEEL MATERIALS CO., LTD, NIPPON MICROMETAL CORPORATION
    Inventors: Masamoto Tanaka, Tsutomu Sasaki, Takayuki Kobayashi, Kazuto Kawakami, Masayoshi Fujishima
  • Patent number: 6643150
    Abstract: The IGBT drive signal to a power converter comprising power semiconductor elements, such as IGBT, is supplied by a PWM controller which performs pulse width modulation of voltage references. A DC offset voltage Vd is generated by a DC offset generator in accordance with the output frequency f and output phase &thgr;, and this voltage Vd and the voltage references are added together by adders 22-24, and supplied to the PWM controller to form IGBT drive signals. Thereby, it is possible to reduce the amount of loss generated by the power semiconductor elements used in the control device of a power converter for converting DC voltage to AC voltage, or AC voltage to DC voltage.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: November 4, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazuto Kawakami
  • Patent number: 6507505
    Abstract: In a power conversion device comprising an AC filter 2 for harmonic current suppression having a combination of at least some of a reactor, capacitor and resistance and a power conversion circuit 3 that converts AC power into DC power or DC power into AC power and is connected to an AC power source 1 through AC filter 2, by providing: voltage reference calculation means (unit) 5 that calculates and outputs a voltage reference corresponding to the voltage that is to be output by the power conversion device main unit; current detection means (unit) 4 that detects and outputs current flowing through a prescribed location between AC power source 1 and power conversion circuit 3; and voltage reference correction means (unit) 8 that uses the output from current detection means (unit) 4 as a voltage reference correction signal to correct the voltage reference that is output from voltage reference calculation means (unit) 5, resonance of the AC filter for harmonic current suppression is suppressed without employing a
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: January 14, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshiaki Oka, Kazuto Kawakami
  • Publication number: 20020131285
    Abstract: The IGBT drive signal to a power converter comprising power semiconductor elements, such as IGBT, is supplied by a PWM controller which performs pulse width modulation of voltage references. A DC offset voltage Vd is generated by a DC offset generator in accordance with the output frequency f and output phase &thgr;, and this voltage Vd and the voltage references are added together by adders 22-24, and supplied to the PWM controller to form IGBT drive signals. Thereby, it is possible to reduce the amount of loss generated by the power semiconductor elements used in the control device of a power converter for converting DC voltage to AC voltage, or AC voltage to DC voltage.
    Type: Application
    Filed: March 5, 2002
    Publication date: September 19, 2002
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kazuto Kawakami
  • Publication number: 20010048604
    Abstract: In a power conversion device comprising an AC filter 2 for harmonic current suppression having a combination of at least some of a reactor, capacitor and resistance and a power conversion circuit 3 that converts AC power into DC power or DC power into AC power and is connected to an AC power source 1 through AC filter 2, by providing: voltage reference calculation means (unit) 5 that calculates and outputs a voltage reference corresponding to the voltage that is to be output by the power conversion device main unit; current detection means (unit) 4 that detects and outputs current flowing through a prescribed location between AC power source 1 and power conversion circuit 3; and voltage reference correction means (unit) 8 that uses the output from current detection means (unit) 4 as a voltage reference correction signal to correct the voltage reference that is output from voltage reference calculation means (unit) 5, resonance of the AC filter for harmonic current suppression is suppressed without employing a
    Type: Application
    Filed: April 3, 2001
    Publication date: December 6, 2001
    Inventors: Toshiaki Oka, Kazuto Kawakami
  • Patent number: 6229722
    Abstract: A multiple inverter system of the present invention is disclosed. It includes a plurality of input transformers having secondary windings and a plurality of unit inverter cells connected in series at n stages to compose respective phases and supply the electric power to a multiple phase load in combination with the input transformers. The input transformers have 3n sets of three-phase windings at the secondary side and the secondary windings of the transformers, which are out-of-phase at each phase, are connected to unit inverter cells of each phase at the n-th stages. Further, the present invention is provided with a bypass switch control to melt a fuse that is applicable to a unit inverter given with a circuit closing command by giving this circuit closing command to a bypass switch corresponding to applicable unit inverters in response to an operation abnormality detector and a DC abnormality detector.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: May 8, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kosaku Ichikawa, Akio Hirata, Kazuto Kawakami, Kazuhiro Satoh