Patents by Inventor Kazutoshi Yatsuda

Kazutoshi Yatsuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100074585
    Abstract: An optical waveguide film includes: an optical waveguide film main body including an optical waveguide core through which light travels and a cladding portion that encloses the optical waveguide core and has a lower refractive index than that of the optical waveguide core; and a marking member that is disposed at least at a portion of a principal surface of the optical waveguide film main body so as to protrude from the principal surface and that includes, at a surface thereof, a groove-shaped mark for positioning.
    Type: Application
    Filed: March 13, 2009
    Publication date: March 25, 2010
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Keishi Shimizu, Masahiro Igusa, Toshihiko Suzuki, Akira Fujii, Kazutoshi Yatsuda, Shigemi Ohtsu
  • Publication number: 20100040337
    Abstract: An optical waveguide includes: a core portion through which light propagates, a cladding portion enclosing the core portion along a direction of light propagation, and a colored resin for position recognition marking, the optical waveguide having substantially planar outer surfaces including principal surfaces thereof, and the colored resin being embedded in the optical waveguide at a position that does not substantially overlap the core portion when viewed from a direction perpendicular to a principal surface of the optical waveguide and does not substantially contact the core portion.
    Type: Application
    Filed: February 2, 2009
    Publication date: February 18, 2010
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Toshihiko SUZUKI, Keishi SHIMIZU, Akira FUJII, Kazutoshi YATSUDA, Masahiro IGUSA, Shigemi OHTSU
  • Publication number: 20100021119
    Abstract: An optical waveguide film includes: an optical waveguide film main body including an optical waveguide core through which light travels and a cladding portion that surrounds the optical waveguide core and has a lower refractive index than that of the optical waveguide core; an electric wiring portion including silver or a silver alloy and formed on at least a part of a principal surface of the optical waveguide film main body; and a protective layer including a titanium layer or a titanium alloy layer and disposed to cover the electric wiring portion.
    Type: Application
    Filed: March 17, 2009
    Publication date: January 28, 2010
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Shigemi Ohtsu, Akira Fujii, Kazutoshi Yatsuda, Masahiro Igusa, Toshihiko Suzuki, Keishi Shimizu
  • Publication number: 20100021109
    Abstract: An optical waveguide includes: an optical waveguide core through which light propagates, at least one end portion of the optical waveguide core in a longitudinal direction thereof having an inclined surface; a reflective layer provided on the inclined surface and formed by a metal layer of silver or a silver alloy; a protective layer disposed to cover the reflective layer; and a cladding portion enclosing the optical waveguide core and having a lower refractive index than that of the optical waveguide core.
    Type: Application
    Filed: February 5, 2009
    Publication date: January 28, 2010
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Shigemi OHTSU, Akira Fujii, Kazutoshi YATSUDA, Masahiro IGUSA, Toshihiko SUZUKI, Keishi SHIMIZU
  • Patent number: 7653280
    Abstract: A polymer optical waveguide includes: an optical waveguide portion that includes a core and a cladding each formed of polymer material; and a conductive line that is installed along the core integrally with the optical waveguide portion, and that has an electrode surface for external connection exposed on a surface different from an end surface of the optical waveguide portion.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: January 26, 2010
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akira Fujii, Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Toshihiko Suzuki, Eiichi Akutsu
  • Patent number: 7646948
    Abstract: A flexible optical waveguide film comprises: two waveguide cores; and a clad surrounding the two waveguide core, wherein a light entrance/exit part is disposed at one end of each of the two waveguide cores, the waveguide film having an optical path converting part comprising an air void located inside the waveguide film, and a light entrance/exit end face of the light entrance/exit part is a plane surface facing an optical path converting surface of the optical path converting part, the optical path converting surface being an interface defining the air void.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: January 12, 2010
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigemi Ohtsu, Toshihiko Suzuki, Akira Fujii, Kazutoshi Yatsuda, Keishi Shimizu, Eiichi Akutsu
  • Patent number: 7620285
    Abstract: The present invention provides an optical waveguide including: a cladding; at least one core embedded in the cladding; and a colored layer that is provided at a portion substantially overlapping with the core when viewed from a direction substantially perpendicular to the principal surfaces of the optical waveguide, and that is not in contact with the core.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: November 17, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Toshihiko Suzuki, Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Akira Fujii, Eiichi Akutsu
  • Patent number: 7616852
    Abstract: An optical substrate includes: a submount; a planar optical element which is mounted on the submount; a pair of positioning members which are disposed at an interval across the planar optical element on the submount; an optical waveguide in which a core and a clad are formed by a flexible material; and a holding member which holds the optical waveguide to allow a tip end of the optical waveguide to be inserted between the pair of positioning members, and the optical waveguide to be bent to extend parallel to the submount.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: November 10, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigemi Ohtsu, Toshihiko Suzuki, Akira Fujii, Kazutoshi Yatsuda, Keishi Shimizu, Eiichi Akutsu
  • Patent number: 7604758
    Abstract: A process for producing a polymer optical waveguide including: 1) preparing a rubber mold having a composite layer structure in which a rubber layer which has a concave portion corresponding to an optical waveguide core and contains a rubber mold-forming curable resin is buried in a rubber layer-forming concave portion of a rigid substrate having the rubber layer-forming concave portion; 2) bringing a cladding substrate into close contact with the rubber mold; 3) filling the concave portion of the rubber mold, with which the cladding substrate has been brought into close contact, with a core-forming curable resin; 4) curing the filled core-forming curable resin; 5) removing the rubber mold from the cladding substrate; and 6) forming a cladding layer on the cladding substrate on which the core has been formed.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: October 20, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Eiichi Akutsu, Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda
  • Patent number: 7582234
    Abstract: A method for producing a polymer optical waveguide including: (1) preparing a template that is made of a template forming curable resin and has a concave portion, (2) applying an ozone treatment or irradiating light having a wavelength of 300 nm or less to at least one of a surface of the template having the concave portion and a core formation surface of a cladding film substrate, (3) bringing the cladding film substrate into close contact with the template, (4) filling a core forming curable resin into the concave portion of the template with which the cladding film substrate is in close contact, (5) curing the filled core forming curable resin to form a core, (6) removing the template from the cladding film substrate, and (7) forming a cladding layer on the cladding film substrate on which the core has been formed.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: September 1, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigemi Ohtsu, Keishi Shimizu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Patent number: 7568846
    Abstract: An optical waveguide film of an optical reception and transmission module guides light. A first optical path converting part of an optical transmission unit guides light. A mirror surface of a first optical path converting part bends light which is emitted from a light emitting element and which enters the first optical path converting part. A first holding member holds the light emitting element and the first optical path converting part. A second optical path converting part of an optical reception unit guides light. A mirror surface of a second optical path converting part bends the guided light. A second holding member holds the light receiving element and the second optical path converting part. A first supporting member supports the first end portion of the optical waveguide film. A second supporting member supports the second end portion of the optical waveguide film.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: August 4, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigemi Ohtsu, Toshihiko Suzuki, Masahiro Igusa, Kazutoshi Yatsuda, Akira Fujii, Keishi Shimizu, Eiichi Akutsu
  • Patent number: 7569168
    Abstract: A method of producing a polymer optical waveguide, the method including preparing a core-forming mold having a concave portion corresponding to at least one optical waveguide core, bringing a concave side of the core-forming mold into close contact with a flat substrate, filling a core-forming curable resin into the concave portion by suction and/or by utilizing a capillary phenomenon, curing the core-forming curable resin to form an optical waveguide core, and removing the optical waveguide core from the core-forming mold and the flat substrate.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: August 4, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Keishi Shimizu, Shigemi Ohtsu, Kazutoshi Yatsuda, Eiichi Akutsu
  • Patent number: 7561773
    Abstract: An optical waveguide includes: a lower substrate; a waveguide core that is formed on the lower substrate; a clad that is formed to surround a periphery of the waveguide core; and an upper substrate that is opposed to the lower substrate, wherein the waveguide cores, the lower substrate and the upper substrate surround a cavity extended along the waveguide core.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: July 14, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akira Fujii, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Patent number: 7546010
    Abstract: A lens-incorporating optical waveguide includes: a core; a clad enclosing the cores; and a lens provided in the core so as to cross a propagating direction of light.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: June 9, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akira Fujii, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Patent number: 7542647
    Abstract: An optical transmission unit of an optical reception and transmission module holds a first end portion of the optical waveguide film on the first holding member so that light emitted from the light emitting device is coupled to an incident end surface of the optical waveguide. An optical reception unit holds a second end portion of the optical waveguide film on the second holding member so that light emitted from an emitting end surface of the optical waveguide is received by the light receiving device. At least the optical waveguide film is covered with flame-retardant resin having flame retardancy of HB or higher according to a UL-94 test and a minimum bending radius of the optical waveguide film covered with the flame-retardant resin and having a flame-retardant resin layer formed on its surface is from 1 mm to 3 mm.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: June 2, 2009
    Assignee: Fuji Xerox Co, Ltd.
    Inventors: Shigemi Ohtsu, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Masahiro Igusa, Akira Fujii, Eiichi Akutsu
  • Patent number: 7542646
    Abstract: There is provided an optical waveguide including: a waveguide core through which light propagates; a cavity that is present inside the waveguide core so as to be open at least one end in the thickness direction of the waveguide core; a layer-form first cladding having a lower refractive index than the waveguide core, and sealing at least one of the at least one opening of the cavity to thereby close the opening of the cavity; and a second cladding having a lower refractive index than the waveguide core, and surrounding the waveguide core. There is also provided a method of manufacturing the optical waveguide.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: June 2, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akira Fujii, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Patent number: 7539384
    Abstract: An optical waveguide comprises: a core for propagating light; a clad covering the core; and a line convex part extending along a line different from the core, the line convex part comprising a cavity used as a positioning mark inside the line convex part.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: May 26, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akira Fujii, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Shigemi Ohtsu, Eiichi Akutsu
  • Publication number: 20090103856
    Abstract: An optical waveguide film of an optical reception and transmission module guides light. A first optical path converting part of an optical transmission unit guides light. A mirror surface of a first optical path converting part bends light which is emitted from a light emitting element and which enters the first optical path converting part. A first holding member holds the light emitting element and the first optical path converting part. A second optical path converting part of an optical reception unit guides light. A mirror surface of a second optical path converting part bends the guided light. A second holding member holds the light receiving element and the second optical path converting part. A first supporting member supports the first end portion of the optical waveguide film. A second supporting member supports the second end portion of the optical waveguide film.
    Type: Application
    Filed: July 21, 2008
    Publication date: April 23, 2009
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Shigemi OHTSU, Toshihiko SUZUKI, Masahiro IGUSA, Kazutoshi YATSUDA, Akira FUJII, Keishi SHIMIZU, Eiichi AKUTSU
  • Publication number: 20090103873
    Abstract: An optical waveguide includes a layer A and a plurality of cores enclosed in a cladding. During production of the optical waveguide, a layered film including alternate layers of a core layer and a cladding layer is cut so as to form a groove that penetrates through the layered film in a thickness direction and so as to form a plurality of core portions, and the layer A is provided so as to partially fill the groove depthwise and so as to maintain spacing between the plurality of core portions before the core portions is enclosed by the cladding.
    Type: Application
    Filed: July 14, 2008
    Publication date: April 23, 2009
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Akira FUJII, Toshihiko SUZUKI, Keishi SHIMIZU, Kazutoshi YATSUDA, Masahiro IGUSA, Shigemi OHTSU, Eiichi AKUTSU
  • Publication number: 20090103857
    Abstract: An optical transmission unit of an optical reception and transmission module holds a first end portion of the optical waveguide film on the first holding member so that light emitted from the light emitting device is coupled to an incident end surface of the optical waveguide. An optical reception unit holds a second end portion of the optical waveguide film on the second holding member so that light emitted from an emitting end surface of the optical waveguide is received by the light receiving device. At least the optical waveguide film is covered with flame-retardant resin having flame retardancy of HB or higher according to a UL-94 test and a minimum bending radius of the optical waveguide film covered with the flame-retardant resin and having a flame-retardant resin layer formed on its surface is from 1 mm to 3 mm.
    Type: Application
    Filed: July 24, 2008
    Publication date: April 23, 2009
    Applicant: Fuji Xerox Co., Ltd.
    Inventors: Shigemi OHTSU, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Masahiro Igusa, Akira Fujii, Eiichi Akutsu