Patents by Inventor Kazuya Hasegawa

Kazuya Hasegawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210300822
    Abstract: A glass panel unit includes a first glass pane, a second glass pane, a frame member, a vacuum space, and a gas adsorbing layer. The gas adsorbing layer is formed to cover at least one of the first glass pane or the second glass pane. The gas adsorbing layer contains a getter material.
    Type: Application
    Filed: June 19, 2019
    Publication date: September 30, 2021
    Inventors: Eiichi URIU, Hiroyuki ABE, Tasuku ISHIBASHI, Kazuya HASEGAWA, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Patent number: 11117831
    Abstract: In s glass panel unit, a pitch of pillars is determined such that a distortion of a first panel and second panel is smaller than an interval between the first panel and the second panel. The distortion is calculated based on the interval between the first panel and the second panel, load loading compression fracture per one pillar of the multiple pillars, Young's moduli of the first panel and the second panel, thicknesses of the first panel and the second panel, and Poisson's ratios of the first panel and the second panel.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: September 14, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroyuki Abe, Eiichi Uriu, Kazuya Hasegawa, Masataka Nonaka, Tasuku Ishibashi
  • Publication number: 20210270084
    Abstract: A method for manufacturing a glass panel unit includes an assembling step, a bonding step, a gas exhausting step, a sealing step, and an activating step. The bonding step includes melting a peripheral wall in a baking furnace at a first predetermined temperature to hermetically bond a first glass pane and a second glass pane together with the peripheral wall thus melted. The gas exhausting step includes exhausting a gas from an internal space through an exhaust port in the baking furnace to turn the internal space into a vacuum space. The sealing step includes locally heating to a temperature higher than a second predetermined temperature, and thereby melting, either a port sealing material or an exhaust pipe to seal the exhaust port and thereby obtain a work in progress. The activating step includes activating a gas adsorbent after the sealing step to obtain a glass panel unit.
    Type: Application
    Filed: June 19, 2019
    Publication date: September 2, 2021
    Inventors: Hiroyuki ABE, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Patent number: 11108310
    Abstract: This rotary electric machine rotor includes: a Lundell core that includes a cylindrical portion, a pair of yoke portions, and a plurality of claw-shaped magnetic pole portions; a bobbin that is mounted around an outer circumference of the cylindrical portion; a field coil that is wound onto the bobbin in multiple layers, the field coil contacting a vicinity of roots of inner circumferential surfaces of the claw-shaped magnetic pole portions; and a cooling fan that supplies air to an outer circumferential surface of the field coil, wherein the field coil is formed so as to have a peaked shape in which two or more peaks line up consecutively in an axial direction, an apex portion of each of the peaks being positioned radially further outward than a root position of the claw-shaped magnetic pole portions.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: August 31, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazuya Hasegawa
  • Publication number: 20210262280
    Abstract: A method for manufacturing a glass panel unit includes a glue arrangement step, an assembly forming step, a first melting step, an evacuation step, and a second melting step. The first melting step includes melting a hot glue, bonding a first and second panel with the glue, and forming an internal space. The first melting step includes a first temperature raising step, a first temperature maintaining step including maintaining the temperature of the assembly at a temperature equal to or higher than a softening point of the hot glue, and a first temperature lowering step, which are performed in this order. The first temperature lowering step includes: an anterior temperature lowering step including lowering the temperature of the assembly; a middle temperature maintaining step including maintaining the temperature of the assembly; and a posterior temperature lowering step including lowering the temperature of the assembly, which are performed in this order.
    Type: Application
    Filed: May 23, 2019
    Publication date: August 26, 2021
    Inventors: Kazuya HASEGAWA, Hiroyuki ABE, Haruhiko ISHIKAWA, Tasuku ISHIBASHI, Eiichi URIU, Takeshi SHIMIZU, Masataka NONAKA
  • Publication number: 20210254396
    Abstract: The assembling step is a step of preparing an assembly. The setting step is a step of setting a plurality of holder installation areas along an outer peripheral edge of the peripheral wall. The determining step is a step of determining a first area in which the slit and the peripheral wall are not adjacent to each other in the first area and a second area in which the slit and the peripheral wall are adjacent to each other. The installation step is a step of providing a holder in the first area without providing the holder in the second area.
    Type: Application
    Filed: May 24, 2019
    Publication date: August 19, 2021
    Inventors: Kazuya HASEGAWA, Hiroyuki ABE, Haruhiko ISHIKAWA, Tasuku ISHIBASHI, Eiichi URIU, Takeshi SHIMIZU, Masataka NONAKA
  • Publication number: 20210238088
    Abstract: A gas adsorption unit includes a getter, a package encapsulating the getter, and a low-melting member. The low-melting member is heated, and thereby melted, at a temperature lower than a melting point of the package to bond a connector including the low-melting member onto the package. Next, the low-melting member that has melted is cooled and cured. Then, thermal stress resulting from a difference in thermal expansion coefficient between the package and the connector is caused to the package connected to the connector, thereby breaking the package open.
    Type: Application
    Filed: June 19, 2018
    Publication date: August 5, 2021
    Inventors: Hiroyuki ABE, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Publication number: 20210221737
    Abstract: A glass panel unit manufacturing method includes a bonding step, an insertion step, an evacuation step, and a sealing step. The bonding step includes bonding a first substrate having an evacuation port and a second substrate with a bonding material having a frame shape to form an internal space. The insertion step includes inserting a sealing material into the evacuation port. The evacuation step includes evacuating the internal space by connecting an exhaust device to the evacuation port and driving the exhaust device. The sealing step includes sealing the evacuation port with the sealing material while an evacuated state in the internal space is maintained. In the sealing step, a measured value by a pressure gauge is monitored while the sealing material is heated, softening of the sealing material is detected based on the transition of the measured value, and heating of the sealing material is stopped.
    Type: Application
    Filed: April 15, 2019
    Publication date: July 22, 2021
    Inventors: Takeshi SHIMIZU, Masataka NONAKA, Haruhiko ISHIKAWA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE
  • Publication number: 20210207427
    Abstract: A glass panel unit manufacturing method includes a bonding step, an insertion step, an evacuation step, and a sealing step. The bonding step includes bonding a first substrate having an evacuation port and a second substrate together with a bonding material provided between the first substrate and the second substrate and having a frame shape to form an internal space. The insertion step includes inserting a sealing material into the evacuation port. The evacuation step includes evacuating the internal space through the exhaust passage. The sealing step includes deforming the sealing material by heating while an evacuated state in the internal space is maintained. In a state where the sealing material blocks ventilation between the evacuation port and the internal space, gas is supplied through the exhaust passage toward the evacuation port.
    Type: Application
    Filed: April 15, 2019
    Publication date: July 8, 2021
    Inventors: Takeshi SHIMIZU, Masataka NONAKA, Haruhiko ISHIKAWA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE
  • Patent number: 11052563
    Abstract: A glass panel unit manufacturing method includes a punching step and a pillar mounting step. In the punching step, a punch punches at least one of a plurality of portions from a base material of a sheet to form at least one pillar. Each of the plurality of portions is surrounded by a corresponding one of a plurality of loop-shaped grooves in the base material. In the pillar mounting step, the at least one pillar is mounted on a surface of a first substrate including a glass pane.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: July 6, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takeshi Shimizu, Hiroyuki Abe, Masataka Nonaka, Kazuya Hasegawa, Eiichi Uriu, Haruhiko Ishikawa, Tasuku Ishibashi, Hiroshi Takahashi, Shinobu Watanabe
  • Publication number: 20210184532
    Abstract: To provide a rotary electric machine which is improved in cooling performance. The rotary electric machine includes a rotor; and a stator which, being disposed opposite the rotor, has a stator core having a plurality of slots therein and a stator winding wound in the plurality of slots, wherein the stator has a plurality of coil ends which are formed protruding from an axial end face of the stator core and between adjacent ones of which is provided a radial clearance passing through from the inner diameter side to the outer diameter side, and wherein the stator includes a bus bar which, being disposed on the inner diameter side of the plurality of coil ends so as to occlude the clearances between the plurality of coil ends, guides a refrigerant, which is supplied from the radial direction of the stator, to the plurality of coil ends.
    Type: Application
    Filed: September 30, 2020
    Publication date: June 17, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kohei EGASHIRA, Kazuya Hasegawa, Tatsuro Hino
  • Publication number: 20210184525
    Abstract: Provided is a rotating electric machine capable of downsizing a coil end. The rotating electric machine includes an armature core and a plurality of coils. The plurality of coils each include a plurality of turn portions. The plurality of turn portions each include an inner-layer-side turn portion and an outer-layer-side turn portion. The inner-layer-side turn portion includes a first inner-layer-side bent portion, a first inner-layer-side oblique portion, and an inner-layer-side shift portion which is twisted. The outer-layer-side turn portion includes a first outer-layer-side bent portion, a first outer-layer-side oblique portion, and an outer-layer-side shift portion. The outer-layer-side shift portion has the inner-layer-side shift portion arranged between the outer-layer-side shift portion and the armature core.
    Type: Application
    Filed: October 28, 2020
    Publication date: June 17, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tatsuro HINO, Katsuya ITO, Hiroyuki YASUDA, Tatsuki KAWASHIMA, Kazuya HASEGAWA
  • Publication number: 20210184526
    Abstract: To obtain a rotating electric machine capable of downsizing the rotating electric machine in an axial direction and in a radial direction. A first inner-peripheral-side terminal includes a first conductor-exposed portion and a second inner-peripheral-side terminal includes a second conductor-exposed portion opposed to the first conductor-exposed portion. An opposing portion being a portion, at which the first conductor-exposed portion and the second conductor-exposed portion are opposed to each other, extends in a radial direction, and at least a part of the opposing portion of the first conductor-exposed portion and the second conductor-exposed portion is arranged on an inner side in the radial direction compared to the first outer-peripheral-side terminal and the second outer-peripheral-side terminal.
    Type: Application
    Filed: October 28, 2020
    Publication date: June 17, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tatsuro HINO, Kohei EGASHIRA, Shinya MATSUNAGA, Yasuhiro HAYASAKA, Norihiro MURATA, Kazuya HASEGAWA, Katsuya ITO
  • Publication number: 20210183535
    Abstract: In the insulation sheet, an insulation resin layer made of a thermosetting resin composition in an uncured or semi-cured state is formed on one or each of both surfaces of the base material. The thermosetting resin composition contains: a thermosetting resin (A) that is in solid form at 25° C.; a thermosetting resin (B) that is in liquid form at 25° C.; a latent curing agent that is unreactive at 60° C. or lower; and an inorganic filler having a maximum particle diameter smaller than a film thickness of the insulation resin layer and having an average particle diameter smaller than 0.5 times the film thickness. The insulation resin layer of the insulation sheet is efficiently compressed into a predetermined thickness by pressure application at normal temperature and permeates a gap between a stator core and a stator coil by heating during curing treatment, whereby both members can be insulated and fixed.
    Type: Application
    Filed: October 28, 2020
    Publication date: June 17, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Shiori NATORI, Naoki YASUDA, Kazuya HASEGAWA, Kenji MAEKAWA, Yasuhiro HAYASAKA
  • Publication number: 20210178525
    Abstract: A pillar delivery method is a method for delivering a plurality of pillars onto a substrate, including a glass panel, to manufacture a glass panel unit. The pillar delivery method includes an irradiation step, a holding step, and a mounting step. The irradiation step includes setting, over a holder, a sheet for use to form pillars and irradiating the sheet with a laser beam to punch out the plurality of pillars. The holding step includes having the plurality of pillars, which have been punched out of the sheet, held by the holder. The mounting step includes picking up some or all of the plurality of pillars from the holder and mounting the pillars onto the substrate.
    Type: Application
    Filed: May 16, 2019
    Publication date: June 17, 2021
    Inventors: Masataka NONAKA, Eiichi URIU, Takeshi SHIMIZU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE, Haruhiko ISHIKAWA
  • Publication number: 20210175758
    Abstract: An annular stator core in which, out of slots arrayed in a circumferential direction and extending in a radial direction, q slots are formed per pole and per phase; and stator windings, for respective phases, attached to the stator core. For each stator winding, q*n unit coils obtained by winding wire conductors at regular intervals into concentric winding forms are used to obtain n coils in each of which the q unit coils wound in a same direction are connected so as to be shifted from each other in the circumferential direction, and the stator winding is composed of two coil groups each obtained by joining the n/2 coils together. The two coil groups are connected in parallel to each other between power feed portions and neutral points, and two coils that are connected to the power feed portions are disposed so as to share the slot.
    Type: Application
    Filed: October 19, 2020
    Publication date: June 10, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Naohiko Ayukawa, Tatsuro Hino, Kohei Egashira, Kazuya Hasegawa, Yasuhiro Hayasaka, Kenji Maekawa
  • Patent number: 11028637
    Abstract: A glass panel unit includes a first panel, a second panel, a sealing portion in a frame shape, a plurality of pillars, and a gas adsorbent. The sealing portion in the frame shape hermetically bonds respective peripheral edges of the first panel and the second panel together so as to create an evacuated, hermetically sealed space between the first panel and the second panel. The plurality of pillars and the gas adsorbent are arranged in the hermetically sealed space. The gas adsorbent contains: a non-metallic getter material having a porous structure with the ability to adsorb gas molecules; and a metallic getter material having a metallic surface with the ability to adsorb gas molecules.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: June 8, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroyuki Abe, Eiichi Uriu, Kazuya Hasegawa, Tasuku Ishibashi, Masataka Nonaka, Takeshi Shimizu, Haruhiko Ishikawa
  • Publication number: 20210147291
    Abstract: A glass panel unit includes: a pair of glass panels arranged to face each other; and a frame member disposed between the pair of glass panels to hermetically bond the pair of glass panels together. The frame member includes: a body; and a reinforcing portion. The body has a frame shape and includes: a first part containing a first sealing material having a first softening point; and a second part containing a second sealing material having a second softening point that is higher than the first softening point. The reinforcing portion contains a third sealing material having a third softening point that is higher than the first softening point. The reinforcing portion is adjacent to the first part in a space surrounded with the pair of glass panels and the body.
    Type: Application
    Filed: March 8, 2019
    Publication date: May 20, 2021
    Inventors: Masataka NONAKA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Patent number: 11011607
    Abstract: The likelihood of formation of a corner resulting from a recess in a part of an n-type semiconductor layer is reduced at a deeper position than a p-type semiconductor layer. A method of manufacturing a semiconductor device comprises: forming a gallium nitride (GaN) based n-type semiconductor layer containing n-type impurities; forming a groove by forming a first mask on a part of a surface of the n-type semiconductor layer and then etching a part uncovered by the first mask; removing the first mask; forming a gallium nitride (GaN) based p-type semiconductor layer containing p-type impurities on the surface of the n-type semiconductor layer including the groove; etching the p-type semiconductor layer so as to expose the n-type semiconductor layer at least in a range differing from a range in the presence of the groove; and forming a metal electrode contacting the exposed n-type semiconductor layer and the p-type semiconductor layer.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 18, 2021
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Kota Yasunishi, Toru Oka, Kazuya Hasegawa
  • Publication number: 20210131167
    Abstract: An assembly includes: a pair of glass substrates; a peripheral wall disposed between the glass substrates; partitions; an evacuation port; and air passages. The partitions are provided to partition an internal space, surrounded with the glass substrates and the peripheral wall, into an evacuation space and a ventilation space. The evacuation port connects the ventilation space to an external environment. The air passages are used to evacuate the evacuation space through the evacuation port. The air passages include particular air passages arranged in a second direction perpendicular to a first direction, in which the glass substrates face each other, to constitute a ventilation path running through the internal space in the second direction.
    Type: Application
    Filed: April 19, 2019
    Publication date: May 6, 2021
    Inventors: Tasuku ISHIBASHI, Eiichi URIU, Kazuya HASEGAWA, Hiroyuki ABE, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA