Patents by Inventor Kazuya Maki

Kazuya Maki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050269875
    Abstract: A vehicle brake device is provided with a hydraulic brake device for boosting by a booster device a braking manipulation force generated upon a braking manipulation, for applying a base fluid pressure generated in dependence on the boosted brake manipulation force, to wheel cylinders of wheels so that a base hydraulic brake force is generated on the wheels, and for driving a pump to generate and apply a controlled fluid pressure to the wheel cylinders so that a controlled hydraulic brake force is generated on the wheels; braking manipulation state detecting means for detecting the braking manipulation state; a regenerative brake device for causing an electric motor to generate a regenerative brake force corresponding to the braking manipulation state on the wheels driven by the electric motor; variation detecting means for detecting the variation of an actual regenerative brake force actually generated by the regeneration braking device; and brake force compensating means for generating the controlled fluid p
    Type: Application
    Filed: May 24, 2005
    Publication date: December 8, 2005
    Inventors: Kazuya Maki, Masahiro Matsuura, Shigeru Saito, Koichi Kokubo, Yuji Sengoku
  • Patent number: 6957871
    Abstract: A more reliable hydraulic brake device is proposed which is capable of regenerative cooperative control and eliminates wasteful consumption of electric power. In a hydraulic brake device capable of regenerative cooperative control, a hydraulic pressure adjusting device is provided to adjust the hydraulic pressure in the auxiliary hydraulic chamber to a desired value that is above the output hydraulic pressure value of the pressure adjusting valve. During regenerative cooperative control, the output hydraulic pressure of the pressure adjusting valve is supplied to the auxiliary hydraulic chamber as it is. During non-regenerative cooperative control the output hydraulic pressure of the pressure adjusting valve is increased corresponding to regenerative braking force and supplied to the auxiliary hydraulic chamber.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: October 25, 2005
    Assignee: Advics Co., Ltd.
    Inventor: Kazuya Maki
  • Patent number: 6851762
    Abstract: A hydraulic booster is provided between a M/C pressure and a W/C pressure. The hydraulic booster is composed of a pump and an amplifying piston amplifying the brake fluid amount discharged from the pump. The brake fluid discharged from the amplifying piston is supplied to the W/C via a first pipeline. The brake fluid discharged from the pump is supplied directly to the W/C via a second pipeline. First and a second control valves select the first or the second pipeline as a pressurizing path to the wheel cylinder.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: February 8, 2005
    Assignee: Denso Corporation
    Inventors: Masahiko Kamiya, Kazuo Masaki, Tooru Fujita, Kyouji Kawano, Taizo Abe, Kazuya Maki, Hiroaki Niino
  • Publication number: 20040108770
    Abstract: It is aimed to improve reliability of a hydraulic brake device which is capable of regenerative cooperative control, and also to eliminate wasteful consumption of electric power. Hydraulic pressure supplied from a hydraulic pressure generating device is adjusted to a value corresponding to the brake operating force by a pressure adjusting valve. A master cylinder is activated under the hydraulic pressure supplied to an auxiliary hydraulic chamber. The output hydraulic pressure of the master cylinder and the pressure adjusting valve is supplied to wheel cylinders to impart braking force to vehicle wheels. A hydraulic pressure adjusting device is provided to adjust the hydraulic pressure in the auxiliary hydraulic chamber to a desired hydraulic pressure value that is above the output hydraulic pressure value of the pressure adjusting valve.
    Type: Application
    Filed: December 2, 2003
    Publication date: June 10, 2004
    Applicant: ADVICS CO., LTD.
    Inventor: Kazuya Maki
  • Patent number: 6564553
    Abstract: In a braking pressure intensifying master cylinder, as an input shaft (53) travels forwards in a braking maneuver, a control valve (54) is actuated to develop fluid pressure according to the input in a reaction chamber (38) and a pressurized chamber (35). A stepped spool (45) as a part of the control valve 54 travels such that force produced by the fluid pressure and spring force of a spring (51) are balanced, whereby the stepped spool (45) can function as a travel simulator. By changing the pressure receiving areas of the stepped spool and/or changing the spring force of the spring (51), the travel characteristic of the input shaft (53) as the input side can be freely changed independently from the output side, without influence on a master cylinder pressure as the output side of the braking pressure intensifying a master cylinder (1). In addition, the master cylinder pressure can be intensified when necessary with a simple structure.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: May 20, 2003
    Assignees: Bosch Braking Systems Co., Ltd., Denso Corporation
    Inventors: Hiroyuki Oka, Michio Kobayashi, Masahiro Shimada, Mamoru Sawada, Kazuya Maki, Hiroaki Niino
  • Patent number: 6491356
    Abstract: The invention relates to a brake system including a brake booster. A pneumatic pressure operated brake booster VBB or a liquid pressure operated brake booster includes a valve mechanism which is urged by a force of depression applied to a brake pedal BP to switch a flow path to cause the brake booster to develop an output which depends on the magnitude of the force of depression. A solenoid SOL urges the valve mechanism in the same direction as or in the opposite direction from the force of depression. A controller ECU is responsive to a braking effort increase/decrease demand signal to increase or decrease the urging force which is applied by the solenoid to the valve mechanism, thus increasing or decreasing the output from the brake booster. An output from the brake booster can be freely controlled independently from the force of depression applied to the brake pedal in response to a braking effort increase/decrease demand.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: December 10, 2002
    Assignees: Bosch Braking Systems Co., Ltd., Denso Corporation
    Inventors: Osamu Kanazawa, Yoshiyasu Takasaki, Michio Kobayashi, Hiroshi Ohsaki, Masahiro Ikeda, Hiroyuki Oka, Hiroaki Niino, Kazuya Maki, Mamoru Sawada
  • Patent number: 6467266
    Abstract: In a brake booster of the present invention, by depression of a brake pedal 3, an input shaft 4 travels to the left, a pedal input converter generates thrust, and a valve element 5a moves to the left. A valve passage 5a1 is shut off from a valve passage 5b1 and a valve passage 5a2 is connected to a valve passage 5b2 so as to develop output pressure Pr at an output port 5c of a control valve 5 because of the pressure of a pressure source. The output pressure Pr is supplied to a wheel cylinder 7, thereby actuating the brake. At this point, since the displacement of the input shaft 4 required for operating the control valve 5 is defined only by the converter 6, the input side is not affected by the brake rigidity of a circuit from the control valve 5 to the wheel cylinder 7. The output pressure Pr of the control valve 5 acts on the valve element 5a through a first reaction receiving portion 8 and is regulated to pressure proportional to the thrust of the converter 6.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: October 22, 2002
    Assignees: Bosch Braking Systems Co., Ltd., Denso Corporation
    Inventors: Osamu Kanazawa, Yoshiyasu Takasaki, Michio Kobayashi, Hiroshi Osaki, Hidefumi Inoue, Hiroyuki Oka, Hiroaki Niino, Kazuya Maki, Mamoru Sawada
  • Patent number: 6467267
    Abstract: In a brake fluid pressure boosting device 1 of the present invention, by operation, an input shaft 4 is moves forward to rotate a lever 27 to actuate a control valve 8 so that the control valve 8 produce working fluid pressure corresponding to the input. The working fluid pressure is introduced into the power chamber 6. By this working fluid pressure, the primary piston 37 is actuated to develop master cylinder pressure. On the other hand, the fluid pressure of the power chamber 6 is introduced into the first annular groove 25 of the valve spool 10. By the difference between pressure receiving areas of the first annular groove 25, the valve spool 10 is subjected to rightward force. The position of the pivot of the lever 27 is fixed and the valve spool 10 is controlled in such a manner that the force applied to the valve spool 10 and the spring force of the spool return spring 32 balances with the input, thereby exhibiting the function as a stroke simulator.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: October 22, 2002
    Assignees: Bosch Braking Systems Co., Ltd., Denso Corporation
    Inventors: Osamu Kanazawa, Michio Kobayashi, Hiroshi Ohsaki, Yoshiyasu Takasaki, Hiroyuki Oka, Hiroyuki Yamaga, Mitsuru Kakuda, Hiroaki Niino, Kazuya Maki, Mamoru Sawada
  • Publication number: 20020101114
    Abstract: A hydraulic booster is provided between a M/C pressure and a W/C pressure. The hydraulic booster is composed of a pump and an amplifying piston amplifying the brake fluid amount discharged from the pump. The brake fluid discharged from the amplifying piston is supplied to the W/C via a first pipeline. The brake fluid discharged from the pump is supplied directly to the W/C via a second pipeline. First and a second control valves select the first or the second pipeline as a pressurizing path to the wheel cylinder.
    Type: Application
    Filed: January 30, 2002
    Publication date: August 1, 2002
    Inventors: Masahiko Kamiya, Kazuo Masaki, Tooru Fujita, Kyouji Kawano, Taizo Abe, Kazuya Maki, Hiroaki Niino
  • Publication number: 20020053206
    Abstract: In a braking pressure intensifying master cylinder of the present invention, as an input shaft 53 travels forwards in a braking maneuver, a control valve 54 is actuated to develop fluid pressure according to the input in a reaction chamber 38 and a pressurized chamber 35. A stepped spool 45 as a part of the control valve 54 travels such that force produced by the fluid pressure and spring force of a spring 51 are balanced, whereby the stepped spool 45 can function as a travel simulator. By changing the pressure receiving areas of the stepped spool 45 and/or changing the spring force of the spring 51, the travel characteristic of the input shaft 53 as the input side can be freely changed independently from the output side, without influence on MCY pressure as the output side of the braking pressure intensifying MCY 1. In addition, the master cylinder pressure can be intensified when necessary with a simple structure.
    Type: Application
    Filed: April 26, 2001
    Publication date: May 9, 2002
    Applicant: BOSCH BRAKING SYSTEMS CO., LTD.
    Inventors: Hiroyuki Oka, Michio Kobayashi, Masahiro Shimada, Mamoru Sawada, Kazuya Maki, Hiroaki Niino
  • Patent number: 6367254
    Abstract: A master cylinder which includes a primary piston and a thrust piston disposed within a housing, and defines an intensifying chamber at a location rearward of the thrust piston. An input shaft has a front end which is disposed within the intensifying chamber. The thrust piston is formed with a communication path (discharge passage), and a control valve is disposed between the thrust piston and the front end of the input shaft to open or close the communication path (discharge passage). When the input shaft is driven forward under the inoperative condition shown and the pump is operated to introduce a discharge pressure from the pump into the intensifying chamber, a liquid pressure is generated in the intensifying chamber and drives the primary piston forward, generating a liquid pressure in a liquid pressure chamber. In this manner, a master cylinder can be provided which has a simple and inexpensive construction with a reduced number of parts and which is compact in size.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: April 9, 2002
    Assignees: Bosch Braking Systems Co., Ltd., Denso Corporation
    Inventors: Yoshiyasu Takasaki, Yasushi Mori, Mamoru Sawada, Kazuya Maki, Hiroaki Niino
  • Publication number: 20020023437
    Abstract: In a brake fluid pressure boosting device 1 of the present invention, by operation, an input shaft 4 is moves forward to rotate a lever 27 to actuate a control valve 8 so that the control valve 8 produce working fluid pressure corresponding to the input. The working fluid pressure is introduced into the power chamber 6. By this working fluid pressure, the primary piston 37 is actuated to develop master cylinder pressure. On the other hand, the fluid pressure of the power chamber 6 is introduced into the first annular groove 25 of the valve spool 10. By the difference between pressure receiving areas of the first annular groove 25, the valve spool 10 is subjected to rightward force. The position of the pivot of the lever 27 is fixed and the valve spool 10 is controlled in such a manner that the force applied to the valve spool 10 and the spring force of the spool return spring 32 balances with the input, thereby exhibiting the function as a stroke simulator.
    Type: Application
    Filed: June 15, 2001
    Publication date: February 28, 2002
    Inventors: Osamu Kanazawa, Michio Kobayashi, Hiroshi Ohsaki, Yoshiyasu Takasaki, Hiroyuki Oka, Hiroyuki Yamaga, Mitsuru Kakuda, Hiroaki Niino, Kazuya Maki, Mamoru Sawada
  • Publication number: 20020014379
    Abstract: In a brake apparatus of the present invention, as MCY pressure is developed by a master cylinder (MCY) 1 according to the forward movement of a primary inner piston 9, a pump of a braking force control device arranged between the MCY 1 and wheel cylinders (WCYs) sucks up hydraulic fluid from the MCY 1 to discharge the hydraulic fluid to the WCYs. Thus, WCY pressure controlled according to operational conditions of various modes is developed. The WCY pressure is supplied to a control pressure chamber 40 to act on a step 8e of a primary outer piston 8. The primary outer piston 8 moves relative to the primary inner piston 9 in such a manner that the force produced by the MCY pressure, the force produced by the WCY pressure, the spring force of a control spring 13, and the frictional force of fluid-tightly slidable portions of the primary outer piston 8 are balanced, whereby the pedal travel can remain the same as that in service braking mode.
    Type: Application
    Filed: April 19, 2001
    Publication date: February 7, 2002
    Applicant: BOSCH BRAKING SYSTEMS CO., LTD & DENSO CORPORATION
    Inventors: Hiroyuki Oka, Masahiro Shimada, Satoru Watanabe, Hiroaki Niino, Kazuya Maki, Mamoru Sawada
  • Publication number: 20020008424
    Abstract: The invention relates to a brake system including a brake booster. A pneumatic pressure operated brake booster VBB or a liquid pressure operated brake booster includes a valve mechanism which is urged by a force of depression applied to a brake pedal BP to switch a flow path to cause the brake booster to develop an output which depends on the magnitude of the force of depression. A solenoid SOL urges the valve mechanism in the same direction as or in the opposite direction from the force of depression. A controller ECU is responsive to a braking effort increase/decrease demand signal to increase or decrease the urging force which is applied by the solenoid to the valve mechanism, thus increasing or decreasing the output from the brake booster. An output from the brake booster can be freely controlled independently from the force of depression applied to the brake pedal in response to a, braking effort increase/decrease demand.
    Type: Application
    Filed: January 29, 2001
    Publication date: January 24, 2002
    Inventors: Osamu Kanazawa, Yoshiyasu Takasaki, Michio Kobayashi, Hiroshi Ohasaki, Masahiro Ikeda, Hiroyuki Oka, Hiroaki Niino, Kazuya Maki, Mamoru Sawada
  • Patent number: 6079799
    Abstract: A brake system has wheel cylinders for producing a braking force in wheels using pressurized brake fluid transmitted through a main conduit from a master cylinder, a reservoir for storing brake fluid, a sideslip preventing device for when a sideslip state of the vehicle is detected supplying brake fluid to the wheel cylinder corresponding to a sideslip controlled wheel and producing a braking force in the sideslip controlled wheel, a first conduit used for supplying brake fluid from the reservoir to the wheel cylinders by the pump and a first valve for switching this first conduit between an open state and a closed state. The sideslip preventing device, when the sideslip state is detected during non-braking of the vehicle, makes the first valve open-state and thereby conducts supply of brake fluid through the first conduit from the reservoir to the wheel cylinder by a pump.
    Type: Grant
    Filed: December 23, 1997
    Date of Patent: June 27, 2000
    Assignee: Denso Corporation
    Inventors: Mamoru Sawada, Kazuya Maki, Hiroaki Niino, Masaki Tate, Yuzo Imoto
  • Patent number: 5876101
    Abstract: Before a wheel to be controlled satisfies conditions to shift to ABS control, when a specified or larger deceleration is caused by applying a brake, a wheel for which the difference in rotational speed from that of a wheel having the maximum rotational speed as the reference is equal to or larger than a predetermined value is subjected to the brake pressure increase restraint. At this time, the magnitude of the estimated lateral acceleration value is determined, and when the vehicle is in a sharp turn, pressure increase rates of the inside wheels are set to be particularly small values.
    Type: Grant
    Filed: August 7, 1997
    Date of Patent: March 2, 1999
    Assignee: Nippondenso Co., Ltd.
    Inventors: Masahiko Taniguchi, Kazuya Maki
  • Patent number: 5653516
    Abstract: An antiskid control system executes a modified antiskid control which strengthens the tendency of the wheel to lock if a vehicle speed is under a predetermined speed and the vehicle is running on a road which has a low coefficient of friction. Antiskid control is also modified with respect to front wheels and is normal with respect to rear wheels in order to avoid an occurrence of vehicle spin. Further, antiskid control is modified with respect to either a front right wheel or a front left wheel. As a result, a stopping distance of the vehicle can be shortened while securing the steering stability of the vehicle.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 5, 1997
    Assignee: Nippondenso Co., Ltd.
    Inventors: Masahiko Taniguchi, Kazuya Maki, Takashi Watanabe, Junji Mizutani
  • Patent number: 5060476
    Abstract: In a hydraulic servo unit comprising a cylinder and a piston slidably inserted therein, the cylinder chamber being divided by a piston portion into a rod-side cylinder chamber and a head-side cylinder chamber, a control apparatus for the hydraulic servo unit includes but is not limited to a first hydraulic line connecting the rod-side cylinder chamber with the hydraulic pressure source which supplies working fluid of a predetermined pressure, a second hydraulic line connecting the head-side cylinder chamber with the first hydraulic line through a first solenoid valve of duty-ratio-control, and a drain hydraulic line connecting the head-side cylinder chamber with drain through a second solenoid valve of duty-ratio-control.
    Type: Grant
    Filed: October 19, 1988
    Date of Patent: October 29, 1991
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kouji Yamaguchi, Junichi Miyake, Kazuya Maki
  • Patent number: 5014574
    Abstract: A speed control apparatus for a continuously variable speed transmission comprises ratio control units for controlling a speed reduction ratio and a manual value for selecting either a running range where engine power is transmitted to the wheels or a neutral range where the engine power is not transmitted to the wheels. The speed reduction ratio is controlled by the ratio control units so as to coincide with a reference speed reduction ratio corresponding to the vehicle speed detected by a speed sensor when the neutral range is selected by manual valve.
    Type: Grant
    Filed: November 4, 1988
    Date of Patent: May 14, 1991
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Koji Sasajima, Kazuya Maki, Kouji Yamaguchi
  • Patent number: 4995470
    Abstract: In a continuously variable speed transmission having a hydraulic pump, a hydraulic motor, a hydraulic closed circuit hydraulically connecting the pump with the motor, a control apparatus has a slip sensor for detecting slip of the driving wheels and a hydraulic control apparatus for lowering hydraulic pressure in the hydraulic closed circuit in accordance with magnitude of the slip of the wheels in such a way that the driving force of the driving wheels is reduced so as to be less than a slip limit force, the slip of the driving wheels being increased when the driving force applied to the driving wheels exceeds the slip limit force.
    Type: Grant
    Filed: October 19, 1988
    Date of Patent: February 26, 1991
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kouji Yamaguchi, Kazuya Maki