Patents by Inventor Kazuyuki YODA

Kazuyuki YODA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142151
    Abstract: A compressor includes: a compressor body that suctions and compresses a gas to be compressed; heat exchangers that circulate a cooled target inside the heat exchangers to cool the cooled target; a fan that is driven by a fan motor and that sends a cooling gas to the heat exchangers to remove heat; a temperature sensor that detects an initial cooling gas temperature that is a temperature of the cooling gas not having been subject to heat removing for the heat exchangers; and a control unit that is capable of setting an upper limit frequency that is an upper limit for controlling a rotational frequency of the fan motor. The control unit sets the upper limit frequency to a rotational frequency equal to or lower than a frequency at which current at an acceptable current level is supplied to the fan motor, at each of the initial cooling gas temperatures detected by the temperature sensor.
    Type: Application
    Filed: March 7, 2022
    Publication date: May 2, 2024
    Applicant: KOBELCO COMPRESSORS CORPORATION
    Inventors: Yosuke FUKUSHIMA, Koki TAKEUCHI, Katsunori HAMADA, Kazuyuki YODA
  • Patent number: 11837691
    Abstract: A battery manufacturing method includes forming a unit cell having a positive electrode that is obtained by a positive electrode active material layer containing an electrolytic solution being disposed on a positive electrode current collector, a negative electrode that is obtained by a negative electrode active material layer containing an electrolytic solution being disposed on a negative electrode current collector, and a separator interposed between the positive electrode and the negative electrode. The battery manufacturing method further includes applying pressure to one unit cell or with two or more stacked unit cells from the stacking direction, and charging the one unit cell or the two or more stacked unit cells after applying of the pressure. The method is performed such that the positive electrode and the negative electrode are formed without an application film being subjected to a drying process performed through heating.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: December 5, 2023
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tomohiro Kaburagi, Kazuyuki Yoda, Eiji Minegishi, Noboru Yamauchi, Yusuke Emori, Hideki Ishitani, Masanori Shimada
  • Patent number: 11658343
    Abstract: A battery manufacturing method includes forming a unit cell having a positive electrode that is obtained by a positive electrode active material layer containing an electrolytic solution being disposed on a positive electrode current collector, a negative electrode that is obtained by a negative electrode active material layer containing an electrolytic solution being disposed on a negative electrode current collector, and a separator interposed between the positive and negative electrodes. Heat sealing a seal part that is disposed at an outer peripheral portion of the unit cell. Cooling the outer peripheral portion of the unit cell by using a cooling medium after carrying out the heat sealing of the seal part. The method is performed such that the positive electrode and the negative electrode are formed without an application film being subjected to a drying process performed through heating.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: May 23, 2023
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Yoda, Tomohiro Kaburagi, Eiji Minegishi, Koh Hatanaka, Takuya Sakurai, Masanori Shimada, Yusuke Emori, Yuichiro Yokoyama
  • Patent number: 11652241
    Abstract: A method for manufacturing a battery has a stacking step in which a plurality of unit cells are stacked, the unit cells being such that a positive electrode obtained by a positive electrode active material layer containing an electrolytic solution disposed on a positive electrode current collector, and a negative electrode obtained by a negative electrode active material layer containing an electrolytic solution disposed on a negative electrode current collector with a separator interposed therebetween. In the stacking step, each time one of the unit cells is stacked, the stack of the unit cells are pressed from the stacking direction.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: May 16, 2023
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tomohiro Kaburagi, Hajime Satou, Kazuyuki Yoda, Shigeo Watanabe, Yusuke Mizuno, Yusuke Emori, Takuya Sakurai
  • Publication number: 20220123274
    Abstract: A method of manufacturing a battery electrode includes a powder supply step, a vibration step, a sorting step, a moving step, and a deposition step, in the powder supply step, a powder 60 composed of granulated particles is supplied, in the vibration step, vibration is applied to the powder, in the sorting step, the powder is caused to pass through at least one opening H1, H2 to adjust a particle diameter of the granulated particles to a particle diameter that allows passing through the opening, in the moving step, the powder that has passed through the opening is moved from an outlet position P1 of the opening to a supply position P2 where the powder is supplied to the surface of a current collector 31, and in the deposition step, the powder is deposited on the surface of the current collector.
    Type: Application
    Filed: January 29, 2020
    Publication date: April 21, 2022
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuyuki YODA, Tomohiro KABURAGI, Hiroshi KUBOTA, Shinichi AKAISHI, Hideaki HORIE, Yuki KUSACHI, Yuichiro YOKOYAMA
  • Patent number: 11165333
    Abstract: A snubber device to be mounted to a terminal of a semiconductor module is provided. The snubber device includes n (n: integer of 1 or greater) parallel charge paths each having a positive-side capacitor, a first diode, and a negative-side capacitor sequentially connected in series between positive-side and negative-side terminals of the semiconductor module, and configured to enable current to flow from the positive-side terminal toward the negative-side terminal; and (n+1) parallel discharge paths each of which having a second diode connected between the negative-side terminal or the negative-side capacitor of an Nth charge path (N: integer within a range of 0?N?n) of then charge paths and the positive-side capacitor of a (N+1)th charge path of the n charge paths or the positive-side terminal, and configured to enable current to flow from the negative-side terminal toward the positive-side terminal via at least one of the negative-side and positive-side capacitors.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: November 2, 2021
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Ryuji Yamada, Qichen Wang, Kazuyuki Yoda
  • Publication number: 20210151739
    Abstract: A manufacturing method is provided for manufacturing an electrode for a lithium-ion battery having a current collector and an electrode active material layer. In the method, an electrolytic solution is added to particles created by pulverizing a mixture containing electrode active material particles and a pressure sensitive adhesive resin to obtain an electrode active material composition. The electrode active material composition is molded into sheet form on a current collector using a roll press. The electrode active material composition has a weight of the electrolytic solution based on a total weight of the electrode active material composition that is 0.1-50 wt %.
    Type: Application
    Filed: May 30, 2019
    Publication date: May 20, 2021
    Inventors: Makoto NISHIGUCHI, Hideki ISHITANI, Hideaki HORIE, Kazuyuki YODA, Hiroshi KUBOTA, Yuki KUSACHI
  • Patent number: 10976373
    Abstract: A lead acid battery device includes a lead acid battery, a charge control unit to charge the lead acid battery by alternately and repeatedly performing high voltage charging, in which a pulsed high voltage is applied to the lead acid battery, and low voltage charging, in which a low voltage lower than the high voltage is applied to the lead acid battery, and an internal resistance calculation unit to calculate an internal resistance of the lead acid battery based on the voltage difference and the current difference of the lead acid battery between a condition at which the pulsed high voltage is applied and a condition at which the pulsed high voltage is not applied.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: April 13, 2021
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takaharu Ohkanda, Kazuyuki Yoda, Hiroshi Takano
  • Publication number: 20210028496
    Abstract: A method for manufacturing a battery has a stacking step in which a plurality of unit cells are stacked, the unit cells being such that a positive electrode obtained by a positive electrode active material layer containing an electrolytic solution disposed on a positive electrode current collector, and a negative electrode obtained by a negative electrode active material layer containing an electrolytic solution disposed on a negative electrode current collector with a separator interposed therebetween. In the stacking step, each time one of the unit cells is stacked, the stack of the unit cells are pressed from the stacking direction.
    Type: Application
    Filed: March 26, 2019
    Publication date: January 28, 2021
    Inventors: Tomohiro KABURAGI, Hajime SATOU, Kazuyuki YODA, Shigeo WATANABE, Yusuke MIZUNO, Yusuke EMORI, Takuya SAKURAI
  • Publication number: 20210013539
    Abstract: A battery manufacturing method includes forming a unit cell having a positive electrode that is obtained by a positive electrode active material layer containing an electrolytic solution being disposed on a positive electrode current collector, a negative electrode that is obtained by a negative electrode active material layer containing an electrolytic solution being disposed on a negative electrode current collector, and a separator interposed between the positive electrode and the negative electrode. The battery manufacturing method further includes applying pressure to one unit cell or with two or more stacked unit cells from the stacking direction, and charging the one unit cell or the two or more stacked unit cells after applying of the pressure. The method is performed such that the positive electrode and the negative electrode are formed without an application film being subjected to a drying process performed through heating.
    Type: Application
    Filed: March 20, 2019
    Publication date: January 14, 2021
    Inventors: Tomohiro KABURAGI, Kazuyuki YODA, Eiji MINEGISHI, Noboru YAMAUCHI, Yusuke EMORI, Hideki ISHITANI, Masanori SHIMADA
  • Publication number: 20210005934
    Abstract: A battery manufacturing method includes forming a unit cell having a positive electrode that is obtained by a positive electrode active material layer containing an electrolytic solution being disposed on a positive electrode current collector, a negative electrode that is obtained by a negative electrode active material layer containing an electrolytic solution being disposed on a negative electrode current collector, and a separator interposed between the positive and negative electrodes. Heat sealing a seal part that is disposed at an outer peripheral portion of the unit cell. Cooling the outer peripheral portion of the unit cell by using a cooling medium after carrying out the heat sealing of the seal part. The method is performed such that the positive electrode and the negative electrode are formed without an application film being subjected to a drying process performed through heating.
    Type: Application
    Filed: March 20, 2019
    Publication date: January 7, 2021
    Inventors: Kazuyuki YODA, Tomohiro KABURAGI, Eiji MINEGISHI, Koh HATANAKA, Takuya SAKURAI, Masanori SHIMADA, Yusuke EMORI, Yuichiro YOKOYAMA
  • Publication number: 20200274125
    Abstract: The present invention provides a separator for lithium ion battery capable of achieving both excellent handling properties and suppression of thermal deformation without changing the thickness of the separator. The present invention is a separator for a lithium ion battery, the separator being disposed between a flat-plate-like positive electrode collector and a flat-plate-like negative electrode collector. The separator for a lithium ion battery is characterized by comprising: a sheet-like separator body a polyolefin porous membrane; and a frame-like member that is arranged annularly along the outer periphery of the separator body, wherein the frame-like member a heat-resistant annular support member and a seal layer that is disposed on the surface of the heat-resistant annular support member and is capable of thermocompression bonding with the positive electrode collector or the negative electrode collector.
    Type: Application
    Filed: August 31, 2018
    Publication date: August 27, 2020
    Applicant: NISSAN MOTOR CO., LTD
    Inventors: Masatoshi OKURA, Masanori KOIKE, Tomohiro KABURAGI, Kazuyuki YODA, Yuki KUSACHI, Yasuhiko OHSAWA, Eiji MINEGISHI
  • Patent number: 10756557
    Abstract: With a conventional pulse charging method, a low voltage value for the pulse voltage is set to zero volts. When the low voltage value is low in this manner during charging, there is a problem that the negative pole of a secondary battery deteriorates. Provided is a secondary battery apparatus including a secondary battery and charge/discharge control apparatus that controls charging and discharging of the secondary battery. The charge/discharge control apparatus repeatedly performs, in an alternating manner, high voltage charging of applying a pulsed high voltage to the secondary battery and low voltage charging of applying a low voltage that is higher than 0 V and lower than the high voltage to the secondary battery.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: August 25, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Takaharu Ohkanda, Kazuyuki Yoda, Hiroshi Takano, Ryuta Nishizuka
  • Publication number: 20200244158
    Abstract: A snubber device to be mounted to a terminal of a semiconductor module is provided. The snubber device includes n (n: integer of 1 or greater) parallel charge paths each having a positive-side capacitor, a first diode, and a negative-side capacitor sequentially connected in series between positive-side and negative-side terminals of the semiconductor module, and configured to enable current to flow from the positive-side terminal toward the negative-side terminal; and (n+1) parallel discharge paths each of which having a second diode connected between the negative-side terminal or the negative-side capacitor of an Nth charge path (N: integer within a range of 0?N?n) of then charge paths and the positive-side capacitor of a (N+1)th charge path of the n charge paths or the positive-side terminal, and configured to enable current to flow from the negative-side terminal toward the positive-side terminal via at least one of the negative-side and positive-side capacitors.
    Type: Application
    Filed: November 25, 2019
    Publication date: July 30, 2020
    Inventors: Ryuji YAMADA, Qichen WANG, Kazuyuki YODA
  • Publication number: 20190170830
    Abstract: A lead acid battery device includes a lead acid battery, a charge control unit to charge the lead acid battery by alternately and repeatedly performing high voltage charging, in which a pulsed high voltage is applied to the lead acid battery, and low voltage charging, in which a low voltage lower than the high voltage is applied to the lead acid battery, and an internal resistance calculation unit to calculate an internal resistance of the lead acid battery based on the voltage difference and the current difference of the lead acid battery between a condition at which the pulsed high voltage is applied and a condition at which the pulsed high voltage is not applied.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Inventors: Takaharu OHKANDA, Kazuyuki YODA, Hiroshi TAKANO
  • Publication number: 20170155277
    Abstract: With a conventional pulse charging method, a low voltage value for the pulse voltage is set to zero volts. When the low voltage value is low in this manner during charging, there is a problem that the negative pole of a secondary battery deteriorates. Provided is a secondary battery apparatus including a secondary battery and charge/discharge control apparatus that controls charging and discharging of the secondary battery. The charge/discharge control apparatus repeatedly performs, in an alternating manner, high voltage charging of applying a pulsed high voltage to the secondary battery and low voltage charging of applying a low voltage that is higher than 0 V and lower than the high voltage to the secondary battery.
    Type: Application
    Filed: November 29, 2016
    Publication date: June 1, 2017
    Inventors: Takaharu OHKANDA, Kazuyuki YODA, Hiroshi TAKANO, Ryuta NISHIZUKA
  • Patent number: 9157432
    Abstract: This invention provides a compression apparatus capable of flexibly responding to a change in service condition. The compression apparatus comprises a compressor main body for housing rotatively driven rotors, an intake channel connected to an intake port of the compressor main body and equipped with a suction adjusting valve, a discharge channel connected to a discharge port of the compressor main body and equipped with a discharge pressure sensor, a revolution speed setting unit for causing a rotor to have a revolution speed that matches a set number of revolutions, a valve controlling unit for controlling the suction adjusting valve based on a discharge pressure detected by the discharge pressure sensor in such a manner that a pressure of the discharge channel is maintained at a set pressure, and a controller for defining the set number of revolutions and the set pressure based on a condition selected by a user.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 13, 2015
    Assignee: (Kobe Steel, Ltd.)
    Inventors: Kazuyuki Yoda, Kai Nakanishi, Tsuyoshi Niimura
  • Publication number: 20130039741
    Abstract: This invention provides a compression apparatus capable of flexibly responding to a change in service condition. The compression apparatus comprises a compressor main body for housing rotatively driven rotors, an intake channel connected to an intake port of the compressor main body and equipped with a suction adjusting valve, a discharge channel connected to a discharge port of the compressor main body and equipped with a discharge pressure sensor, a revolution speed setting unit for causing a rotor to have a revolution speed that matches a set number of revolutions, a valve controlling unit for controlling the suction adjusting valve based on a discharge pressure detected by the discharge pressure sensor in such a manner that a pressure of the discharge channel is maintained at a set pressure, and a controller for defining the set number of revolutions and the set pressure based on a condition selected by a user.
    Type: Application
    Filed: July 12, 2012
    Publication date: February 14, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Kazuyuki YODA, Kai Nakanishi, Tsuyoshi Niimura