Patents by Inventor Keiichiro Kai

Keiichiro Kai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230405570
    Abstract: A catalyst unit for purifying flue gas, comprising a plurality of platy catalyst elements, wherein the platy catalyst element comprises one flat plate portion and one wavy plate portion, the wavy plate portion has ridges and thalwegs, the platy catalyst elements are stacked each other so that a top of the ridges of the wavy plate portion in one of the platy catalyst elements is in contact with the flat plate portion of another adjacent of the platy catalyst elements and the wavy plate portion secures gas flow paths, the flat plate portion and the wavy plate portion are respectively quadrilateral in view image from normal direction relative to a main face thereof, an edge of the flat plate portion and an edge of the wavy plate portion are connected, and a number of the ridges and a number of the thalwegs are totally not less than 4.
    Type: Application
    Filed: November 1, 2021
    Publication date: December 21, 2023
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kotoe Matsuyama, Keiichiro Kai
  • Publication number: 20230285950
    Abstract: A method for purifying combustion exhaust gas, comprising: placing a denitration catalyst in gas stream to remove nitrogen oxides from a combustion exhaust gas, wherein the denitration catalyst comprises a shaped product comprising a catalyst component and having microcracks on the surface of the shaped-product, and 80% to 100% of the microcracks on the number basis have an angle of a longitudinal direction of the microcracks with respect to a main direction of the gas stream within ±30 degrees.
    Type: Application
    Filed: August 4, 2021
    Publication date: September 14, 2023
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Shimpei Kaneda, Keiichiro Kai
  • Publication number: 20220168722
    Abstract: A method comprising treating combustion exhaust gas containing nitrogen oxides in the presence of a denitration catalyst to remove nitrogen oxides from the combustion exhaust gas, wherein the denitration catalyst is composed of a shaped product comprising a catalyst component, the shaped product has micro cracks in a mesh pattern or a bipectinate pattern on the surface of the shaped product, and the micro cracks have a 95% crack width of 100 ?m or less and a crack area ratio variation coefficient of 0.7 or less.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 2, 2022
    Applicant: MITSUBISHI POWER, LTD.
    Inventors: Masashi KIYOSAWA, Shimpei KANEDA, Keiichiro KAI, Koichi YOKOYAMA
  • Publication number: 20220112421
    Abstract: A plate-shaped chemical heat storage comprising a substrate composed of a net made of metal and a heat storage material composition supported on the substrate, wherein the heat storage material composition comprises at least one selected from the group consisting of magnesium hydroxide or oxide, strontium hydroxide or oxide, barium hydroxide or oxide, calcium hydroxide or oxide, and calcium sulfate, and optionally at least one selected from the group consisting of titanium dioxide, silicon dioxide, alumina silicate fiber, E-glass fiber and cellulose.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 14, 2022
    Applicant: MITSUBISHI POWER, LTD.
    Inventors: Keiichiro Kai, Masashi Kiyosawa, Koichi Yokoyama
  • Patent number: 10549264
    Abstract: A used denitration catalyst is regenerated by means of a method comprising bringing the used denitration catalyst comprising titanium oxide as an essential ingredient into contact with a suspension of particles comprising manganese oxide, subjecting the resulting product to a liquid draining, and subjecting the liquid-drained product to a drying process, additionally, further comprising impregnating a solution comprising a compound containing at least one element selected from the group consisting of vanadium, molybdenum and tungsten into the denitration catalyst after the drying process, and subjecting the impregnated product to a drying treatment.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: February 4, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Keiichiro Kai, Yasuyoshi Kato, Naomi Imada
  • Publication number: 20180133691
    Abstract: A used denitration catalyst is regenerated by means of a method comprising bringing the used denitration catalyst comprising titanium oxide as an essential ingredient into contact with a suspension of particles comprising manganese oxide, subjecting the resulting product to a liquid draining, and subjecting the liquid-drained product to a drying process, additionally, further comprising impregnating a solution comprising a compound containing at least one element selected from the group consisting of vanadium, molybdenum and tungsten into the denitration catalyst after the drying process, and subjecting the impregnated product to a drying treatment.
    Type: Application
    Filed: April 13, 2016
    Publication date: May 17, 2018
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Keiichiro KAI, Yasuyoshi KATO, Naomi IMADA
  • Patent number: 9724683
    Abstract: Provided is a catalyst structure which prevents an increase in pressure loss by a simple construction while the gas flow is efficiently stirred by a structure making contact between adjacent catalyst elements. The catalyst structure is provided with a first flat-plate part and a second flat-plate part which support, on surfaces thereof, a constituent having catalytic activity to an exhaust gas and face each other, and a stirring part which is provided in such a manner as to come into contact first with the first flat-plate part and the second flat-plate part in an extending manner from the first flat-plate part to the second flat-plate part at a prescribed angle with respect to the direction in which the exhaust gas flows.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: August 8, 2017
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Kenichi Arakawa, Naomi Imada
  • Patent number: 9694318
    Abstract: A catalyst structure for exhaust gas cleaning obtained by superimposing flat plate-like catalyst elements composed of a flat part, which is a main structural part, and a linear spacer part composed of raised strips and recessed strips so that a gas flow channel is ensured along the lengthwise direction of the spacer part, wherein the flat part has at least one baffle part composed of a leg plate erectly provided on the flat part with a height that is less than that of the spacer part with reference to the flat part, and a top plate disposed substantially parallel to the flat part from the upper end of the leg plate. Turbulence can be imparted by the baffle part to gas that flows to the gas flow channel.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: July 4, 2017
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Keiichiro Kai, Yasuyoshi Kato
  • Patent number: 9186657
    Abstract: An exhaust gas purification catalyst contains titanium oxide as a main component and an oxide of one element or two or more elements selected from the group consisting of tungsten (W), molybdenum (Mo), and vanadium (V) as an active component, wherein the exhaust gas purification catalyst contains phosphoric acid or a water soluble phosphoric acid compound so that the atomic ratio of phosphorus (P) to a catalytically active component represented by the following formula is more than 0 and 1.0 or less; P/catalytically active component (atomic ratio)=number of moles of P/(number of moles of W+number of moles of Mo+number of moles of V).
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: November 17, 2015
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Yasuyoshi Kato, Naomi Imada, Keiichiro Kai
  • Publication number: 20150258494
    Abstract: A catalyst structure for exhaust gas cleaning obtained by superimposing flat plate-like catalyst elements composed of a flat part, which is a main structural part, and a linear spacer part composed of raised strips and recessed strips so that a gas flow channel is ensured along the lengthwise direction of the spacer part, wherein the flat part has at least one baffle part composed of a leg plate erectly provided on the flat part with a height that is less than that of the spacer part with reference to the flat part, and a top plate disposed substantially parallel to the flat part from the upper end of the leg plate. Turbulence can be imparted by the baffle part to gas that flows to the gas flow channel.
    Type: Application
    Filed: November 12, 2013
    Publication date: September 17, 2015
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Keiichiro Kai, Yasuyoshi Kato
  • Publication number: 20150182958
    Abstract: Provided is a catalyst structure which prevents an increase in pressure loss by a simple construction while the gas flow is efficiently stirred by a structure making contact between adjacent catalyst elements. The catalyst structure is provided with a first flat-plate part and a second flat-plate part which support, on surfaces thereof, a constituent having catalytic activity to an exhaust gas and face each other, and a stirring part which is provided in such a manner as to come into contact first with the first flat-plate part and the second flat-plate part in an extending manner from the first flat-plate part to the second flat-plate part at a prescribed angle with respect to the direction in which the exhaust gas flows.
    Type: Application
    Filed: July 11, 2013
    Publication date: July 2, 2015
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Kenichi Arakawa, Naomi Imada
  • Patent number: 9044736
    Abstract: A metal substrate for flue gas-denitration catalyst that, like SUS304, can be used without corroding is provided by improving the corrosion resistance of SUS430 substrate that is inexpensive and can easily be supplied stably. A method for producing the metal substrate for flue gas-denitration catalyst, wherein the method comprising the steps of: lath-processing a band-shaped steel plate made of ferrite stainless steel into a band-shaped metal lath; (1) degreasing process oil adhering to the metal lath; (2) passing the metal lath through a solution containing phosphoric acid and surfactant to load the solution; (3) draining off the excess solution; and (4) drying and heating the solution-loaded metal lath to react the phosphoric acid with the substrate, in which respective steps are carried out sequentially to form a film of phosphate compound on a surface of the substrate.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: June 2, 2015
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Yasuyoshi Kato, Naomi Imada, Keiichiro Kai, Kotoe Matsuyama
  • Publication number: 20140228208
    Abstract: A metal substrate for flue gas-denitration catalyst that, like SUS304, can be used without corroding is provided by improving the corrosion resistance of SUS430 substrate that is inexpensive and can easily be supplied stably. A method for producing the metal substrate for flue gas-denitration catalyst, wherein the method comprising the steps of: lath-processing a band-shaped steel plate made of ferrite stainless steel into a band-shaped metal lath; (1) degreasing process oil adhering to the metal lath; (2) passing the metal lath through a solution containing phosphoric acid and surfactant to load the solution; (3) draining off the excess solution; and (4) drying and heating the solution-loaded metal lath to react the phosphoric acid with the substrate, in which respective steps are carried out sequentially to form a film of phosphate compound on a surface of the substrate.
    Type: Application
    Filed: June 28, 2011
    Publication date: August 14, 2014
    Applicant: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Naomi Imada, Keiichiro Kai, Kotoe Matsuyama
  • Patent number: 8748332
    Abstract: Provided is a method for cleaning a used denitration catalyst, which prevents release of mercury to the atmosphere by collecting and removing mercury which would have been released to the atmosphere in the process of cleaning the used denitration catalyst. The method comprises immersing the used denitration catalyst mainly composed of titanium oxide and having been used in exhaust gas containing mercury in a cleaning liquid, and stirring the cleaning liquid to dissolve and remove catalyst poisons including the mercury from the used denitration catalyst, wherein a waste gas generated in the step of stirring the cleaning liquid is conducted to a flue having a mercury removal device so as to remove the mercury, and then vented to the atmosphere.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 10, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Seiji Ikemoto, Yasuyoshi Kato, Keiichiro Kai
  • Patent number: 8673250
    Abstract: An exhaust gas purification catalyst is made as a composition comprising titanium oxide (TiO2), aluminum sulfate (Al2(SO4)3), an oxide of vanadium (V), and an oxide of molybdenum (Mo) and/or tungsten (W), wherein on titanium oxide having sulfate ions and aluminum ions adsorbed thereon obtained by making contact with aluminum sulfate at more than 1 wt % and not more than 6 wt % relative to titanium oxide in the presence of water, an oxo acid salt of vanadium or a vanadyl salt and an oxo acid or an oxo acid salt of molybdenum and/or tungsten are supported in a proportion of more than 0 atom % and not more than 3 atom %, respectively. By this, the degradation of catalyst performance can be suppressed even with exhaust gas containing potassium compounds at a high concentration in combustion ash.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 18, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Keiichiro Kai, Yasuyoshi Kato, Naomi Imada
  • Publication number: 20130251612
    Abstract: An exhaust gas purification catalyst contains titanium oxide as a main component and an oxide of one element or two or more elements selected from the group consisting of tungsten (W), molybdenum (Mo), and vanadium (V) as an active component, wherein the exhaust gas purification catalyst contains phosphoric acid or a water soluble phosphoric acid compound so that the atomic ratio of phosphorus (P) to a catalytically active component represented by the following formula is more than 0 and 1.0 or less; P/catalytically active component (atomic ratio)=number of moles of P/(number of moles of W+number of moles of Mo+number of moles of V).
    Type: Application
    Filed: May 7, 2013
    Publication date: September 26, 2013
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: YASUYOSHI KATO, NAOMI IMADA, KEIICHIRO KAI
  • Patent number: 8535628
    Abstract: To overcome the problem of a conventional catalyst and to provide an exhaust gas purifying catalyst that meets the requirement concerning Hg oxidation activity and SO2 oxidation activity; i.e., an exhaust gas purifying catalyst which specifically reduces percent SO2 oxidation, while maintaining percent Hg oxidation at a high level. The invention provides an exhaust gas purifying catalyst which comprises a composition containing oxides of (i) titanium (Ti), (ii) molybdenum (Mo) and/or tungsten (W), (iii) vanadium (V), and (iv) phosphorus (P), wherein the catalyst contains Ti, Mo and/or W, and V in atomic proportions of 85 to 97.5:2 to 10: 0.5 to 10, and has an atomic ratio of P/(sum of V and Mo and/or W) of 0.5 to 1.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: September 17, 2013
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Naomi Imada
  • Patent number: 8470728
    Abstract: To overcome the problem of a conventional catalyst and to provide an exhaust gas purifying catalyst that meets the requirement concerning Hg oxidation activity and SO2 oxidation activity; i.e., an exhaust gas purifying catalyst which specifically reduces percent SO2 oxidation, while maintaining percent Hg oxidation at a high level. The invention provides an exhaust gas purifying catalyst which comprises a composition containing oxides of (i) titanium (Ti), (ii) molybdenum (Mo) and/or tungsten (W), (iii) vanadium (V), and (iv) phosphorus (P), wherein the catalyst contains Ti, Mo and/or W, and V in atomic proportions of 85 to 97.5:2 to 10:0.5 to 10, and has an atomic ratio of P/(sum of V and Mo and/or W) of 0.5 to 1.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: June 25, 2013
    Assignee: Babcock Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Naomi Imada
  • Publication number: 20130142719
    Abstract: An exhaust gas purification catalyst is made as a composition comprising titanium oxide (TiO2), aluminum sulfate (Al2(SO4)3), an oxide of vanadium (V), and an oxide of molybdenum (Mo) and/or tungsten (W), wherein on titanium oxide having sulfate ions and aluminum ions adsorbed thereon obtained by making contact with aluminum sulfate at more than 1 wt % and not more than 6 wt % relative to titanium oxide in the presence of water, an oxo acid salt of vanadium or a vanadyl salt and an oxo acid or an oxo acid salt of molybdenum and/or tungsten are supported in a proportion of more than 0 atom % and not more than 3 atom %, respectively. By this, the degradation of catalyst performance can be suppressed even with exhaust gas containing potassium compounds at a high concentration in combustion ash.
    Type: Application
    Filed: August 4, 2011
    Publication date: June 6, 2013
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Keiichiro Kai, Yasuyoshi Kato, Naomi Imada
  • Publication number: 20130129590
    Abstract: To overcome the problem of a conventional catalyst and to provide an exhaust gas purifying catalyst that meets the requirement concerning Hg oxidation activity and SO2 oxidation activity; i.e., an exhaust gas purifying catalyst which specifically reduces percent SO2 oxidation, while maintaining percent Hg oxidation at a high level. The invention provides an exhaust gas purifying catalyst which comprises a composition containing oxides of (i) titanium (Ti), (ii) molybdenum (Mo) and/or tungsten (W), (iii) vanadium (V), and (iv) phosphorus (P), wherein the catalyst contains Ti, Mo and/or W, and V in atomic proportions of 85 to 97.5:2 to 10: 0.5 to 10, and has an atomic ratio of P/(sum of V and Mo and/or W) of 0.5 to 1.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 23, 2013
    Applicant: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Naomi Imada