Patents by Inventor Keisei Abe

Keisei Abe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7456082
    Abstract: In a method for producing a silicon single by pulling the silicon single crystal from a silicon melt contained in a crucible, a magnetic field is applied to the silicon melt in a radial direction of the silicon single crystal, and a vertical level of a center of the magnetic field relative to a surface of the silicon melt is controlled such that a thermal gradient in an axial direction of the crystal is maintained at a constant value in respective portions along a radial direction of the silicon single crystal.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: November 25, 2008
    Assignee: Sumco Corporation
    Inventor: Keisei Abe
  • Publication number: 20070028833
    Abstract: In a method for producing a silicon single by pulling the silicon single crystal from a silicon melt contained in a crucible, a magnetic field is applied to the silicon melt in a radial direction of the silicon single crystal, and a vertical level of a center of the magnetic field relative to a surface of the silicon melt is controlled such that a thermal gradient in an axial direction of the crystal is maintained at a constant value in respective portions along a radial direction of the silicon single crystal.
    Type: Application
    Filed: July 24, 2006
    Publication date: February 8, 2007
    Inventor: Keisei Abe
  • Patent number: 6261364
    Abstract: A system for growing high-quality, low-carbon-concentration single crystals which have an excellent gas-flow guiding function near the melt, containing 1) an inverted conical, flow-guide cover placed above and coaxially with a double-walled crucible, with its lower end located immediately above the surface of the melt and in the space between the outer surface of the single crystal to be grown and the inner surface of the sidewall of the inner crucible; 2) a short passage comprising a hole passing through the sidewall of the inner crucible at a position higher than the level of the melt; and 3) a flow guide cylinder placed above and coaxially with the double-walled crucible, with its lower end located immediately above the surface of the melt and in the space between the outer surface of the sidewall of the inner crucible and the inner surface of the sidewall of the outer crucible, all arranged in a furnace.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: July 17, 2001
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Materials Silicon Corporation
    Inventors: Yoshiaki Arai, Keisei Abe, Norihisa Machida
  • Patent number: 6096128
    Abstract: A germanium layer 19 is melted on top of a starting polycrystalline silicon ingot 18, at a temperature below the melting point of pure silicon. Silicon is dissolved at the interface and floats to the top of the germanium melt to form a silicon melt layer 11, from which a crystal 20 can be drawn. The process permits the production of large diameter crystal with low oxygen content and no more than one percent germanium.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: August 1, 2000
    Assignees: Toshiba Ceramics Co., Ltd., Komatsu Electronic Metals Co., Ltd., Japan Science and Technology Corporation, Mitsubishi Materials Silicon corporation
    Inventors: Hideo Nakanishi, Susumu Maeda, Keisei Abe, Kazutaka Terashima
  • Patent number: 6019837
    Abstract: A temperature sensor 42 is provided in a furnace 11, measuring temperature above a molten liquid 24 put in a crucible 12 to check proceedings of evaporation of oxygen vaporized from a free surface 44 of the molten liquid 24. From the data, and considering the relation with the oxygen dissolved into the crucible 12, the oxygen concentration in the molten liquid 24 can be found and the amount of oxygen taken into a single silicon crystal 40 pulled up from the molten liquid 24 can be figured out.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: February 1, 2000
    Assignees: Komatsu Electronic Metals Co., Ltd., Mitsubishi Materials Silicon Corporation, Kagaku Gijutsu Sinkou Jigyo Dan, Toshiba Ceramics Co., Ltd.
    Inventors: Susumu Maeda, Keisei Abe, Kazutaka Terashima, Hideo Nakanishi
  • Patent number: 6004393
    Abstract: A temperature sensor 42 is provided in a furnace 11, measuring temperature above a molten liquid 24 put in a crucible 12 to check proceedings of evaporation of oxygen vaporized from a free surface 44 of the molten liquid 24. From the data, and considering the relation with the oxygen dissolved into the crucible 12, the oxygen concentration in the molten liquid 24 can be found and the amount of oxygen taken into a single silicon crystal 40 pulled up from the molten liquid 24 can be figured out.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: December 21, 1999
    Assignees: Komatsu Electronic Metals Co., Ltd., Mitsubishi Materials Silicon Corporation, Kagaku Gijutsu Sinkou Jigyo Dan, Toshiba Ceramics Co., Ltd.
    Inventors: Susumu Maeda, Keisei Abe, Kazutaka Terashima, Hideo Nakanishi
  • Patent number: 5858085
    Abstract: A system for growing high-quality, low-carbon-concentration single crystals which have an excellent gas-flow guiding function near the melt, containing 1) an inverted conical, flow-guide cover placed above and coaxially with a double-walled crucible, with its lower end located immediately above the surface of the melt and in the space between the outer surface of the single crystal to be grown and the inner surface of the sidewall of the inner crucible; 2) a short passage comprising a hole passing through the sidewall of the inner crucible at a position higher than the level of the melt; and 3) a flow guide cylinder placed above and coaxially with the double-walled crucible, with its lower end located immediately above the surface of the melt and in the space between the outer surface of the sidewall of the inner crucible and the inner surface of the sidewall of the outer crucible, all arranged in a furnace.
    Type: Grant
    Filed: May 28, 1997
    Date of Patent: January 12, 1999
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Materials Silicon Corporation
    Inventors: Yoshiaki Arai, Keisei Abe, Norihisa Machida
  • Patent number: 5720810
    Abstract: A system for growing high-quality, low-carbon-concentration single crystals which have an excellent gas-flow guiding function near the melt, containing 1) an inverted conical, flow-guide cover placed above and coaxially with a double-walled crucible, with its lower end located immediately above the surface of the melt and in the space between the outer surface of the single crystal to be grown and the inner surface of the sidewall of the inner crucible; 2) a short passage comprising a hole passing through the sidewall of the inner crucible at a position higher than the level of the melt; and 3) a flow guide cylinder placed above and coaxially with the double-walled crucible, with its lower end located immediately above the surface of the melt and in the space between the outer surface of the sidewall of the inner crucible and the inner surface of the sidewall of the outer crucible, all arranged in a furnace.
    Type: Grant
    Filed: August 22, 1995
    Date of Patent: February 24, 1998
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Materials Silicon Corporation
    Inventors: Yoshiaki Arai, Keisei Abe, Norihisa Machida
  • Patent number: 5474022
    Abstract: There is provided a double crucible for growing a silicon single crystal in which the partition wall 17 in the shape of ring is concentric with the main crucible 6 in the shape of bottomed cylinder and the lower end of the partition wall 17 is fixed on the inner bottom of the main crucible, and thus the outer crucible 18 and the inner crucible 19 are formed inside the main crucible. The partition wall 17 is uniform in thickness and has introducing holes 20 in its lower part which link the outer crucible with the inner crucible. The partition wall is made so that the inner diameter of its lower part may be smaller than the inner diameter of its upper part. Supposing that A is the diameter of the partition wall at a level of molten silicon, h is a depth from the surface of the molten silicon to the introducing holes, V(out) is an amount of molten silicon stored in the outer crucible, and V(in) is an amount of molten stored in the inner crucible, the relation of D/A=1.5 to 3, 2h/A>1, and V(out)/V(in)=0.
    Type: Grant
    Filed: April 11, 1995
    Date of Patent: December 12, 1995
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Materials Silicon Corporation
    Inventors: Keisei Abe, Hisashi Furuya, Norihisa Machida, Yoshiaki Arai