Patents by Inventor Keith Bargroff

Keith Bargroff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955932
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: April 9, 2024
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 11948897
    Abstract: Integrated circuits (ICs) that avoid or mitigate creation of changes in accumulated charge in a silicon-on-insulator (SOI) substrate, particularly an SOI substrate having a trap rich layer. In one embodiment, a FET is configured such that, in a standby mode, the FET is turned OFF while maintaining essentially the same VDS as during an active mode. In another embodiment, a FET is configured such that, in a standby mode, current flow through the FET is interrupted while maintaining essentially the same VGS as during the active mode. In another embodiment, a FET is configured such that, in a standby mode, the FET is switched into a very low current state (a “trickle current” state) that keeps both VGS and VDS close to their respective active mode operational voltages. Optionally, S-contacts may be formed in an IC substrate to create protected areas that encompass FETs that are sensitive to accumulated charge effects.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: April 2, 2024
    Assignee: pSemi Corporation
    Inventors: Robert Mark Englekirk, Keith Bargroff, Christopher C. Murphy, Tero Tapio Ranta, Simon Edward Willard
  • Publication number: 20240094757
    Abstract: A controllable temperature coefficient bias (CTCB) circuit is disclosed. The CTCB circuit can provide a bias to an amplifier. The CTCB circuit includes a variable with temperature (VWT) circuit having a reference circuit and a control circuit. The control circuit has a control output, a first current control element and a second current control element. Each current control element has a “controllable” resistance. One of the two current control elements may have a relatively high temperature coefficient and another a relatively low temperature coefficient. A controllable resistance of one of the current control elements increases when the controllable resistance of the other current control element decreases. However, the “total resistance” of the current control circuit remains constant with a constant temperature. The VWT circuit has an output with a temperature coefficient that is determined by the relative amount of current that flows through each current control element of the control circuit.
    Type: Application
    Filed: July 26, 2023
    Publication date: March 21, 2024
    Inventors: Robert Mark Englekirk, Keith Bargroff, Christopher C. Murphy, Tero Tapio Ranta
  • Patent number: 11929824
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: March 12, 2024
    Assignee: Entropic Communications, LLC
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20240039479
    Abstract: Various methods and circuital arrangements for biasing one or more gates of stacked transistors of an amplifier are possible where the amplifier is configured to operate in at least an active mode and a standby mode. Circuital arrangements can reduce bias circuit and stacked transistors standby current during operation in the standby mode and to reduce impedance presented to the gates of the stacked transistors during operation in the active mode while maintaining voltage compliance of the stacked transistors during both modes of operation.
    Type: Application
    Filed: August 9, 2023
    Publication date: February 1, 2024
    Inventors: Poojan Wagh, Kashish Pal, Robert Mark Englekirk, Tero Tapio Ranta, Keith Bargroff, Simon Edward Willard
  • Patent number: 11867584
    Abstract: Methods and devices to mitigate time varying impairments in sensors are described. The application of such methods and devices to pressure sensors facing time varying parasitic capacitances due to water droplets is detailed. Benefits of auto-zeroing technique as adopted in disclosed devices is also described.
    Type: Grant
    Filed: September 5, 2021
    Date of Patent: January 9, 2024
    Assignee: pSemi Corporation
    Inventors: Vishnu Srinivasan, Ion Opris, Keith Bargroff
  • Publication number: 20230387864
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Application
    Filed: May 23, 2023
    Publication date: November 30, 2023
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 11742802
    Abstract: Various methods and circuital arrangements for biasing one or more gates of stacked transistors of an amplifier are possible where the amplifier is configured to operate in at least an active mode and a standby mode. Circuital arrangements can reduce bias circuit and stacked transistors standby current during operation in the standby mode and to reduce impedance presented to the gates of the stacked transistors during operation in the active mode while maintaining voltage compliance of the stacked transistors during both modes of operation.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: August 29, 2023
    Assignee: pSemi Corporation
    Inventors: Poojan Wagh, Kashish Pal, Robert Mark Englekirk, Tero Tapio Ranta, Keith Bargroff, Simon Edward Willard
  • Publication number: 20230254058
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Application
    Filed: February 22, 2023
    Publication date: August 10, 2023
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Patent number: 11720136
    Abstract: A controllable temperature coefficient bias (CTCB) circuit is disclosed. The CTCB circuit can provide a bias to an amplifier. The CTCB circuit includes a variable with temperature (VWT) circuit having a reference circuit and a control circuit. The control circuit has a control output, a first current control element and a second current control element. Each current control element has a “controllable” resistance. One of the two current control elements may have a relatively high temperature coefficient and another a relatively low temperature coefficient. A controllable resistance of one of the current control elements increases when the controllable resistance of the other current control element decreases. However, the “total resistance” of the current control circuit remains constant with a constant temperature. The VWT circuit has an output with a temperature coefficient that is determined by the relative amount of current that flows through each current control element of the control circuit.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: August 8, 2023
    Assignee: pSemi Corporation
    Inventors: Robert Mark Englekirk, Keith Bargroff, Christopher C. Murphy, Tero Tapio Ranta
  • Patent number: 11664769
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: May 30, 2023
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Publication number: 20230152836
    Abstract: A controllable temperature coefficient bias (CTCB) circuit is disclosed. The CTCB circuit can provide a bias to an amplifier. The CTCB circuit includes a variable with temperature (VWT) circuit having a reference circuit and a control circuit. The control circuit has a control output, a first current control element and a second current control element. Each current control element has a “controllable” resistance. One of the two current control elements may have a relatively high temperature coefficient and another a relatively low temperature coefficient. A controllable resistance of one of the current control elements increases when the controllable resistance of the other current control element decreases. However, the “total resistance” of the current control circuit remains constant with a constant temperature. The VWT circuit has an output with a temperature coefficient that is determined by the relative amount of current that flows through each current control element of the control circuit.
    Type: Application
    Filed: November 15, 2022
    Publication date: May 18, 2023
    Inventors: Robert Mark Englekirk, Keith Bargroff, Christopher C. Murphy, Tero Tapio Ranta
  • Patent number: 11616585
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: March 28, 2023
    Assignee: Entropic Communications, LLC
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20230084770
    Abstract: Temperature compensation circuits and methods for adjusting one or more circuit parameters of a power amplifier (PA) to maintain approximately constant Gain versus time during pulsed operation sufficient to substantially offset self-heating of the PA. Some embodiments compensate for PA Gain “droop” due to self-heating using a Sample and Hold (S&H) circuit. The S&H circuit samples and holds an initial temperature of the PA at commencement of a pulse. Thereafter, the S&H circuit generates a continuous measurement that corresponds to the temperature of the PA during the remainder of the pulse. A Gain Control signal is generated that is a function of the difference between the initial temperature and the operating temperature of the PA as the PA self-heats for the duration of the pulse. The Gain Control signal is applied to one or more adjustable or tunable circuits within a PA to offset the Gain droop of the PA.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 16, 2023
    Inventors: Tero Tapio Ranta, Keith Bargroff, Christopher C. Murphy, Robert Mark Englekirk
  • Patent number: 11507125
    Abstract: A controllable temperature coefficient bias (CTCB) circuit is disclosed. The CTCB circuit can provide a bias to an amplifier. The CTCB circuit includes a variable with temperature (VWT) circuit having a reference circuit and a control circuit. The control circuit has a control output, a first current control element and a second current control element. Each current control element has a “controllable” resistance. One of the two current control elements may have a relatively high temperature coefficient and another a relatively low temperature coefficient. A controllable resistance of one of the current control elements increases when the controllable resistance of the other current control element decreases. However, the “total resistance” of the current control circuit remains constant with a constant temperature. The VWT circuit has an output with a temperature coefficient that is determined by the relative amount of current that flows through each current control element of the control circuit.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: November 22, 2022
    Assignee: pSemi Corporation
    Inventors: Robert Mark Englekirk, Keith Bargroff, Christopher C. Murphy, Tero Tapio Ranta
  • Publication number: 20220368287
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Application
    Filed: June 17, 2022
    Publication date: November 17, 2022
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta
  • Patent number: 11451205
    Abstract: Temperature compensation circuits and methods for adjusting one or more circuit parameters of a power amplifier (PA) to maintain approximately constant Gain versus time during pulsed operation sufficient to substantially offset self-heating of the PA. Some embodiments compensate for PA Gain “droop” due to self-heating using a Sample and Hold (S&H) circuit. The S&H circuit samples and holds an initial temperature of the PA at commencement of a pulse. Thereafter, the S&H circuit generates a continuous measurement that corresponds to the temperature of the PA during the remainder of the pulse. A Gain Control signal is generated that is a function of the difference between the initial temperature and the operating temperature of the PA as the PA self-heats for the duration of the pulse. The Gain Control signal is applied to one or more adjustable or tunable circuits within a PA to offset the Gain droop of the PA.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: September 20, 2022
    Assignee: pSemi Corporation
    Inventors: Tero Tapio Ranta, Keith Bargroff, Christopher C. Murphy, Robert Mark Englekirk
  • Patent number: 11431427
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: August 30, 2022
    Assignee: Entropic Communications, LLC
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20220246550
    Abstract: Integrated circuits (ICs) that avoid or mitigate creation of changes in accumulated charge in a silicon-on-insulator (SOI) substrate, particularly an SOI substrate having a trap rich layer. In one embodiment, a FET is configured such that, in a standby mode, the FET is turned OFF while maintaining essentially the same VDS as during an active mode. In another embodiment, a FET is configured such that, in a standby mode, current flow through the FET is interrupted while maintaining essentially the same VGS as during the active mode. In another embodiment, a FET is configured such that, in a standby mode, the FET is switched into a very low current state (a “trickle current” state) that keeps both VGS and VDS close to their respective active mode operational voltages. Optionally, S-contacts may be formed in an IC substrate to create protected areas that encompass FETs that are sensitive to accumulated charge effects.
    Type: Application
    Filed: February 11, 2022
    Publication date: August 4, 2022
    Inventors: Robert Mark Englekirk, Keith Bargroff, Christopher C. Murphy, Tero Tapio Ranta, Simon Edward Willard
  • Patent number: 11374540
    Abstract: Bias circuits and methods for silicon-based amplifier architectures that are tolerant of supply and bias voltage variations, bias current variations, and transistor stack height, and compensate for poor output resistance characteristics. Embodiments include power amplifiers and low-noise amplifiers that utilize a cascode reference circuit to bias the final stages of a cascode amplifier under the control of a closed loop bias control circuit. The closed loop bias control circuit ensures that the current in the cascode reference circuit is approximately equal to a selected multiple of a known current value by adjusting the gate bias voltage to the final stage of the cascode amplifier. The final current through the cascode amplifier is a multiple of the current in the cascode reference circuit, based on a device scaling factor representing the relative sizes of the transistor devices in the cascode amplifier and in the cascode reference circuit.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: June 28, 2022
    Assignee: pSemi Corporation
    Inventors: Jonathan James Klaren, David Kovac, Eric S. Shapiro, Christopher C. Murphy, Robert Mark Englekirk, Keith Bargroff, Tero Tapio Ranta