Patents by Inventor Keith H. Kuechler

Keith H. Kuechler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9452965
    Abstract: A process for producing phenol and/or cyclohexanone is described in which cyclohexylbenzene is contacted with an oxygen-containing gas under conditions effective to produce an oxidation effluent comprising cyclohexylbenzene hydroperoxide and at least part of cyclohexylbenzene hydroperoxide is contacted with a cleavage catalyst under conditions effective to produce a cleavage effluent containing phenol and cyclohexanone. At least one of the oxidation effluent and the cleavage effluent contains at least one phenylcyclohexanol as a by-product and the process further comprises contacting the phenylcyclohexanol with a dehydration catalyst comprising a molecular sieve of the MCM-22 family under conditions effective to convert at least part of the phenylcyclohexanol to phenylcyclohexene.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: September 27, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Charles Morris Smith, Keith H. Kuechler, Christopher L. Becker, Terry E. Helton, Jason D. Davis, Edmund J. Mozeleski
  • Publication number: 20160251288
    Abstract: A process for making phenol and/or cyclohexanone, the process comprising: (A) oxidizing a cyclohexylbenzene feed to obtain an oxidation product comprising cyclohexylbenzene, cyclohexylbenzene hydroperoxide and water; (B) removing at least a portion of the water from at least a portion of the oxidation product to obtain a cleavage feed; and (C) contacting at least a portion of the cyclohexylbenzene hydroperoxide in the cleavage feed with an acid catalyst in a cleavage reactor under cleavage conditions to obtain a cleavage product comprising phenol and cyclohexanone. The removing step may also comprises a step of removing a portion of the cyclohexylbenzene contained in the oxidation product. Water removal may be advantageously conducted in a water flashing drum before a cyclohexylbenzene hydroperoxide concentrator.
    Type: Application
    Filed: August 27, 2014
    Publication date: September 1, 2016
    Inventors: Francisco M. Benitez, Christopher L. Becker, Keith H. Kuechler, Jason D. Davis
  • Publication number: 20160229767
    Abstract: Disclosed is a hydroalkylation process in which the hydroalkylation catalyst is activated in the presence of a flowing fluid comprising hydrogen and a condensable agent. The presence of the condensable agent enables fast, effective activation of the hydroalkylation catalyst precursor in a cost-effective manner. It also yields superior catalyst performance.
    Type: Application
    Filed: September 26, 2014
    Publication date: August 11, 2016
    Inventors: Gabor Kiss, Thomas E. Green, Keith H. Kuechler
  • Patent number: 9382172
    Abstract: In a process for producing cyclohexylbenzene, benzene is contacted with hydrogen in the presence of a hydroalkylation catalyst under hydroalkylation conditions effective to form a first effluent stream comprising cyclohexylbenzene, cyclohexane, and benzene. At least a portion of the cyclohexane from the first effluent stream is then contacted with hydrogen in the presence of a dehydrogenation catalyst under dehydrogenation conditions effective to convert at least some of the cyclohexane into benzene contained in a second effluent stream. At least some of the hydrogen is supplied to the process so as to contact the dehydrogenation zone (e.g., the dehydrogenation catalyst) before contacting the hydroalkylation catalyst.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: July 5, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christopher L. Becker, James R. Lattner, Keith H. Kuechler, Hari Nair
  • Patent number: 9365467
    Abstract: In a process for producing cyclohexylbenzene, benzene is contacted with hydrogen under hydroalkylation conditions effective to form a first effluent stream comprising cyclohexylbenzene, cyclohexane, methylcyclopentane, and unreacted benzene. At least a portion of the first effluent stream is contacted with a dehydrogenation catalyst under dehydrogenation conditions to convert at least a portion of the cyclohexane to benzene thereby forming a second effluent stream. The amount of methylcyclopentane in the second effluent stream is different by no more than 65% of the total amount of the portion of the first effluent stream, said amounts being on a weight basis. A methylcyclopentane-containing stream is removed from either the first or the second effluent stream and at least a portion of the second effluent stream containing benzene is recycled to the hydroalkylation step.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 14, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, James R. Lattner, Christopher L. Becker, Jihad M. Dakka, Tan-Jen Chen
  • Patent number: 9346721
    Abstract: The invention relates to hydrocarbon conversion processes, to equipment useful in such processes, to the products of such hydrocarbon conversion processes and the use thereof, and to the use of energy derived from such processes.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: May 24, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Mark Davis, Mark L. Merrifield, Keith H. Kuechler, Loren K. Starcher
  • Patent number: 9340474
    Abstract: In a process for producing phenol and/or cyclohexanone, a cleavage reaction mixture containing cyclohexyl-1-phenyl-hydroperoxide and cyclohexylbenzene is contacted with sulfuric acid and water under cleavage conditions effective to form a cleavage reaction effluent containing phenol, cyclohexanone, cyclohexylbenzene, water, sulfuric acid and 1-phenylcyclohexanol. At least a portion of the cleavage reaction effluent is neutralized with a basic material to produce a neutralized cleavage product and at least a portion of the neutralized cleavage product is supplied in the absence of an added dehydration catalyst to a distillation column. The distillation column is operated so that at least a portion of the neutralized cleavage product is exposed to a temperature greater than 70° C. at at least one location in the distillation column whereby at least a portion of the 1-phenylcyclohexanol in the neutralized cleavage product is dehydrated to phenylcyclohexene.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: May 17, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Jason D. Davis
  • Patent number: 9321709
    Abstract: In a process for producing phenol and cyclohexanone, a feed comprising cyclohexylbenzene is oxidized to produce an oxidation reaction product comprising cyclohexyl-1-phenyl-1-hydroperoxide. At least a portion of the oxidation reaction product is then cleaved to produce a cleavage reaction product comprising phenol, cyclohexanone, and at least one contaminant. At least a portion of the cleavage reaction product is contacted with an acidic material to convert at least a portion of the at least one contaminant to a converted contaminant and thereby produce a modified reaction product.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 26, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Francisco M. Benitez
  • Patent number: 9278897
    Abstract: In a process for producing phenol and/or cyclohexanone, cyclohexylbenzene is contacted with an oxygen-containing gas to produce an oxidation effluent containing cyclohexylbenzene hydroperoxide. At least a portion of the cyclohexylbenzene hydroperoxide is then contacted with a cleavage catalyst to produce a cleavage effluent containing phenol and cyclohexanone and by-products including phenylcyclohexanol. The cleavage effluent or a neutralized product thereof also comprises at least one heteroatom-containing compound, which is separated from the cleavage effluent and/or the neutralized product thereof to leave a cleavage fraction lean in the heteroatom-containing compound and containing at least a portion of the phenylcyclohexanol. At least a portion of the phenylcyclohexanol is then contacted with a dehydration catalyst comprising a molecular sieve of the MCM-22 type to convert at least a portion of the phenylcyclohexanol to phenylcyclohexene.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: March 8, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Jihad M. Dakka, James R. Lattner, Christopher L. Becker, Edmund J. Mozeleski
  • Patent number: 9242918
    Abstract: Described herein is a process for producing phenol in which (a) benzene and hydrogen are contacted with a hydroalkylation catalyst under hydroalkylation conditions to produce cyclohexylbenzene; (b) the cyclohexylbenzene is contacted with an oxidation catalyst under oxidation conditions to produce cyclohexylbenzene hydroperoxide; (c) the cyclohexylbenzene hydroperoxide is contacted with a cleavage catalyst under cleavage conditions to produce a cleavage effluent comprising phenol and cyclohexanone; (d) the cyclohexanone is contacted with a dehydrogenation catalyst under dehydrogenation conditions to produce a dehydrogenation effluent having at least a portion of the cyclohexanone and a first contaminant; and (e) the first contaminant is contacted with an acidic material under contaminant treatment conditions to convert at least a portion of the first contaminant into a converted first contaminant. Phenol compositions made from the above-described process are also described herein.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: January 26, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Francisco M. Benitez
  • Patent number: 9187391
    Abstract: Described herein are compositions having (a) at least 99 wt % phenol; and (b) 0.1 wppm to 1000 wppm of at least one of the following components: bicyclohexane, cyclohexylbenzene, methylcyclopentylbenzene, hydroxycyclohexanone, cyclohexenone, cyclohexanol, cyclohexanone, cyclohexanedione, benzoic acid, hexanal, and methycyclopentanone, wherein the wt % and wppm are based upon the total weight of the composition.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: November 17, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Francisco M. Benitez
  • Patent number: 9181165
    Abstract: In a process for separating a mixture comprising cyclohexanone and phenol, at least a portion of the mixture is distilled in the presence of a solvent including at least two alcoholic hydroxyl groups attached to non-adjacent saturated carbon atoms, water, and in the presence or absence of a hemiketal defined by the formula (I) or the formula (II): wherein R1, the same or different at each occurrence, is independently an alkylene group having from 2 to 10 carbon atoms, R2 is an alkylene group having from 4 to 10 carbon atoms and/or R3 is hydrogen or the following group: and in the presence or absence of an enol-ether derived from the hemiketal defined by the formula (I) or the formula (II), wherein the total concentration of the hemiketal and enol-ether, expressed in term of weight percentage of the total weight of the feed to the distilling step, is at most 0.01%.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: November 10, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Francisco M. Benitez, Krystle J. Emanuele, Christopher L. Becker, John L. Heidman, Jr.
  • Publication number: 20150315111
    Abstract: Disclosed herein is a process for producing phenol. The process includes oxidizing at least a portion of a feed comprising cyclohexylbenzene to produce an oxidation composition comprising cyclohexyl-1-phenyl-1-hydroperoxide. The oxidation composition may then be cleaved in the presence of an acid catalyst to produce a cleavage reaction mixture comprising the acid catalyst, phenol and cyclohexanone. At least a portion of the cleavage reaction mixture may be neutralized with a basic material to form a treated cleavage reaction mixture. In various embodiments, the treated cleavage reaction mixture contains no greater than 50 wppm of the acid catalyst or no greater than 50 wppm of the basic material.
    Type: Application
    Filed: July 15, 2015
    Publication date: November 5, 2015
    Inventors: Keith H. Kuechler, Francisco M. Benitez, Kun Wang, James R. Lattner, Christopher L. Becker
  • Patent number: 9174908
    Abstract: In a process for separating methylcyclopentanone from a mixture comprising methylcyclopentanone and cyclohexanone, a feedstock comprising cyclohexanone, methylcyclopentanone, water at a concentration of at least 0.10 wt %, and optionally phenol is fed into a fractionation distillation column, where a lower effluent rich in cyclohexanone and an upper effluent rich in methylcyclopentanone are produced. Due to the inclusion of water at a relatively high concentration in the feedstock, efficient separation of methylcyclopentanone is achieved. In certain particularly desirable embodiments, the lower effluent is substantially free of methylcyclopentanone. The thus produced cyclohexanone may be used to make, e.g., high-purity caprolactam, which, in turn, may be used for fabricating, e.g., high-performance nylon-6 material.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: November 3, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jason D. Davis, Keith H. Kuechler, James R. Lattner, Christopher L. Becker, John L. Heidman, Jr.
  • Patent number: 9169170
    Abstract: An alkylating process such as hydroalkylating process comprising feeding a gas material and a liquid material into the reactor, distributing the liquid material to the upper surface of a bed of a catalyst substantially uniformly. The substantial uniform distribution of the liquid material to the upper surface allows for substantially uniform distribution of liquid reaction medium in the bed, thereby preventing hot spot and undesirable continuous liquid zone, both of which can cause the production of undesired by-products. The invention is particularly useful for the hydroalkylation reaction of benzene in making cyclohexylbenzene, which can be used for making cyclohexanone and phenol.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: October 27, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gabor Kiss, Keith H. Kuechler
  • Patent number: 9169175
    Abstract: In a process for producing phenol and cyclohexanone, a feed comprising cyclohexylbenzene is oxidized to produce an oxidation reaction product comprising cyclohexyl-1-phenyl-1-hydroperoxide. At least a portion of the oxidation reaction product is then cleaved to produce a cleavage reaction product comprising phenol, cyclohexanone, and at least one contaminant. At least a portion of the cleavage reaction product is contacted with an acidic material to convert at least a portion of the at least one contaminant to a converted contaminant and thereby produce a modified reaction product. The composition comprising cyclohexylbenzene may have at least 10 wt % of cyclohexylbenzene; 1 wppm to 1 wt % of bicyclohexane; 1 wppm to 1 wt % of biphenyl; and 1 wppm to 2 wt % of methylcyclopentylbenzene, wherein the wt % s and wppms are based upon total weight of the composition.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: October 27, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Francisco M. Benitez
  • Patent number: 9169172
    Abstract: The present invention relates to hydrogenation processes including: contacting a first composition with hydrogen under hydrogenation conditions, in the presence of an eggshell hydrogenation catalyst, wherein the first composition has: (i) greater than about 50 wt % of cyclohexylbenzene, the wt % based upon the total weight of the first composition; and (ii) greater than about 0.3 wt % of cyclohexenylbenzene, the wt % based upon the total weight of the first composition; and thereby obtaining a second composition having less cyclohexenylbenzene than the first composition. Other hydrogenation processes are also described.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: October 27, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Travis A. Reine, Keith H. Kuechler, Terry E. Helton, Jihad M. Dakka
  • Publication number: 20150291493
    Abstract: In a process for producing phenol and/or cyclohexanone, a cleavage reaction mixture containing cyclohexyl-1-phenyl-hydroperoxide and cyclohexylbenzene is contacted with sulfuric acid and water under cleavage conditions effective to form a cleavage reaction effluent containing phenol, cyclohexanone, cyclohexylbenzene, water, sulfuric acid and 1-phenylcyclohexanol. At least a portion of the cleavage reaction effluent is neutralized with a basic material to produce a neutralized cleavage product and at least a portion of the neutralized cleavage product is supplied in the absence of an added dehydration catalyst to a distillation column. The distillation column is operated so that at least a portion of the neutralized cleavage product is exposed to a temperature greater than 70° C. at at least one location in the distillation column whereby at least a portion of the 1-phenylcyclohexanol in the neutralized cleavage product is dehydrated to phenylcyclohexene.
    Type: Application
    Filed: November 22, 2013
    Publication date: October 15, 2015
    Inventors: Keith H. Kuechler, Jason D. Davis
  • Publication number: 20150251986
    Abstract: In a process for producing phenol and cyclohexanone, a cleavage feed containing greater than 40 wt % and no greater than 95 wt % cyclohexyl-1-phenyl-1-hydroperoxide, and at least 5 wt % and less than 60 wt % cyclohexylbenzene is mixed with at least phenol, cyclohexanone, water, and sulfuric acid to produce a cleavage reaction mixture containing from 15 wt % to 50 wt % phenol, from 15 wt % to 50 wt % cyclohexanone, from 1 wt % to 10 wt % cyclohexyl-1-phenyl-1-hydroperoxide, from 5 wt % to 60 wt % cyclohexylbenzene, from 0.1 wt % to 4 wt % water, and from 10 wppm to 1000 wppm sulfuric acid. The cleavage reaction mixture is then reacted at a temperature from 30° C. and to 70° C., and a pressure of at least 1 atmosphere for a time sufficient to convert at least 50% of said cyclohexyl-1-phenyl-1-hydroperoxide in said cleavage reaction mixture and produce a cleavage effluent containing phenol and cyclohexanone.
    Type: Application
    Filed: November 13, 2013
    Publication date: September 10, 2015
    Inventors: Keith H. Kuechler, Charles Morris Smith, Francisco M. Benitez, Kun Wang, Hari Nair, Travis A. Reine, Gabor Kiss, Roberto Garcia, Christopher L. Becker
  • Patent number: 9115068
    Abstract: Disclosed herein is a process for producing phenol. The process includes oxidizing at least a portion of a feed comprising cyclohexylbenzene to produce an oxidation composition comprising cyclohexyl-1-phenyl-1-hydroperoxide. The oxidation composition may then be cleaved in the presence of an acid catalyst to produce a cleavage reaction mixture comprising the acid catalyst, phenol and cyclohexanone. At least a portion of the cleavage reaction mixture may be neutralized with a basic material to form a treated cleavage reaction mixture. In various embodiments, the treated cleavage reaction mixture contains no greater than 50 wppm of the acid catalyst or no greater than 50 wppm of the basic material.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: August 25, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Francisco M. Benitez, Kun Wang, James R. Lattner, Christopher L. Becker