Patents by Inventor Keith Nelson

Keith Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10495703
    Abstract: A nonlinear terahertz (THz) spectroscopy technique uses a sample illuminated by two THz pulses separately. The illumination generates two signals BA and BB, corresponding to the first and second THz pulse, respectively, after interaction with the sample. The interaction includes excitation of at least one ESR transition in the sample. The sample is also illuminated by the two THz pulses together, with an inter-pulse delay ?, generating a third signal BAB. A nonlinear signal BNL is then derived via BNL=BAB?BA?BB. This nonlinear signal BNL can be then processed (e.g., Fourier transform) to study the properties of the sample.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: December 3, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Harold Young Hwang, Jian Lu, Yaqing Zhang, Benjamin K. Ofori-Okai, Keith A. Nelson, Xian Li
  • Patent number: 10329462
    Abstract: A tackifying resin includes a farnesene-based polymer having monomeric units derived from a farnesene monomer and one or more optional comonomers selected from the group consisting of dienes, branched mono-olefins, and vinyl aromatics and has a softening point greater than or equal to 80 degrees Celsius. A method of making the farnesene-based polymer includes combining a farnesene monomer and a solvent and optionally adding one or more comonomers selected from the group consisting of dienes, branched mono-olefins, and vinyl aromatics, to provide a monomer feed, and polymerizing the monomer feed by combining the monomer feed with a Friedel-Crafts catalyst in a vessel. The tackifying resin may be combined with an elastomer to form a hot melt adhesive composition.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: June 25, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Keith A Nelson, Anaïs Pierre-Justin, Nestor P Hansen
  • Patent number: 10241058
    Abstract: Quality control of a periodic structure is performed using the damping rate of acoustic waves generated in the periodic structure. In this technique, an excitation light beam illuminates the first layer in the periodic structure to excite an acoustic wave. Possible irregularities in the periodic structure can scatter the acoustic wave, thereby increasing the damping rate of the acoustic wave. A sequence of probe light beams illuminates the periodic structure to measure the acoustic wave as a function of time to generated a temporal signal representing the damping rate of the acoustic signal. The acquired damping rate is employed to evaluate the quality of the periodic structure.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: March 26, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Alexei Maznev, Keith A. Nelson, Abdelhak Bensaoula, Jateen S. Gandhi, Donna Washington Stokes, Rebecca Lynne Forrest, Hyun Doug Shin
  • Publication number: 20190086486
    Abstract: A nonlinear terahertz (THz) spectroscopy technique uses a sample illuminated by two THz pulses separately. The illumination generates two signals BA and BB, corresponding to the first and second THz pulse, respectively, after interaction with the sample. The interaction includes excitation of at least one ESR transition in the sample. The sample is also illuminated by the two THz pulses together, with an inter-pulse delay ?, generating a third signal BAB. A nonlinear signal BNL is then derived via BNL=BAB?BA?BB. This nonlinear signal BNL can be then processed (e.g., Fourier transform) to study the properties of the sample.
    Type: Application
    Filed: March 9, 2018
    Publication date: March 21, 2019
    Inventors: Harold Young Hwang, Jian Lu, Yaqing Zhang, Benjamin K. Ofori-Okai, Keith A. Nelson, Xian Li
  • Patent number: 10197741
    Abstract: A fiber optic adapter is disclosed. The fiber optic adapter includes a main body configured to receive a first fiber optic connector through a first end and a second fiber optic connector through a second end for mating with the first fiber optic connector. The adapter includes a ferrule alignment structure located within an axial cavity of the main body, the ferrule alignment structure including a sleeve mount and a ferrule sleeve, the sleeve mount including an axial bore and at least one latching hook extending from a center portion of the sleeve mount toward the first end of the main body and at least one latching hook extending from the center portion toward the second end of the main body, the latching hooks configured to flex for releasably latching the first and second fiber optic connectors to the fiber optic adapter.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: February 5, 2019
    Assignee: CommScope Technologies LLC
    Inventor: Keith Nelson
  • Publication number: 20180340103
    Abstract: A tackifying resin includes a farnesene-based polymer having monomeric units derived from a farnesene monomer and one or more optional comonomers selected from the group consisting of dienes, branched mono-olefins, and vinyl aromatics and has a softening point greater than or equal to 80 degrees Celsius. A method of making the farnesene-based polymer includes combining a farnesene monomer and a solvent and optionally adding one or more comonomers selected from the group consisting of dienes, branched mono-olefins, and vinyl aromatics, to provide a monomer feed, and polymerizing the monomer feed by combining the monomer feed with a Friedel-Crafts catalyst in a vessel. The tackifying resin may be combined with an elastomer to form a hot melt adhesive composition.
    Type: Application
    Filed: August 2, 2018
    Publication date: November 29, 2018
    Inventors: Keith A. Nelson, Anaïs Pierre-Justin, Nestor P. Hansen
  • Publication number: 20180274045
    Abstract: A controller for a compost system comprises a plurality of control outputs in communication with a plurality of compost devices. The control outputs are configured to identify an error condition of at least one of the plurality of compost devices. The controller is configured to control a first compost device configured to control a first environmental condition and control a second compost device configured to control a second environmental condition of a compost chamber. The controller is further configured to deactivate the first compost device in response to an error condition during a compost cycle. The controller controls the second compost device in response to the first compost device being deactivated preserving the compost cycle by compensating for the error condition in the first compost device.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Applicant: Whirlpool Corporation
    Inventor: Keith Nelson
  • Patent number: 10072186
    Abstract: A tackifying resin includes a farnesene-based polymer having monomeric units derived from a farnesene monomer and one or more optional comonomers selected from the group consisting of dienes, branched mono-olefins, and vinyl aromatics and has a softening point greater than or equal to 80 degrees Celsius. A method of making the farnesene-based polymer includes combining a farnesene monomer and a solvent and optionally adding one or more comonomers selected from the group consisting of dienes, branched mono-olefins, and vinyl aromatics, to provide a monomer feed, and polymerizing the monomer feed by combining the monomer feed with a Friedel-Crafts catalyst in a vessel. The tackifying resin may be combined with an elastomer to form a hot melt adhesive composition.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: September 11, 2018
    Assignee: Fina Technology, Inc.
    Inventors: Keith A. Nelson, Anaïs Pierre-Justin, Nestor P. Hansen
  • Publication number: 20180214763
    Abstract: Novel and advantageous masks and helmets to protect an athlete's head and face from impacts and injuries. In particular, the present disclosure relates to novel and advantageous masks and helmets to help protect a baseball or softball catcher's face and head from concussive forces of an incoming ball strike. A mask of the present disclosure may be coupled to a helmet, or may be configured for use without a helmet in some embodiments. The mask may provide a generally cone-shaped structure in front of a wearer's face, so as to provide an angled surface for contact with an incoming ball. Additionally, a shock absorbing material may be provided at an interface between the helmet and mask to reduce and distribute force transfer between the mask and the helmet.
    Type: Application
    Filed: January 29, 2018
    Publication date: August 2, 2018
    Inventor: Keith Nelson
  • Patent number: 10030279
    Abstract: A controller for a compost system configured to identify an error condition is disclosed. The controller comprises at least one control output. The control output is configured to measure a load current of the at least one control output and generate a load value. The at least one control output is in communication with a compost device and is configured to control an environmental condition of a compost chamber of the compost system. The controller is operable to compare the load value to a predetermined value to determine an error condition of the compost system.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: July 24, 2018
    Assignee: Whirlpool Corporation
    Inventor: Keith Nelson
  • Patent number: 10024723
    Abstract: An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 17, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Harold Y. Hwang, Mengkun Liu, Richard D. Averitt, Keith A. Nelson, Aaron Sternbach, Kebin Fan
  • Publication number: 20180128986
    Abstract: A fiber optic adapter is disclosed. The fiber optic adapter includes a main body configured to receive a first fiber optic connector through a first end and a second fiber optic connector through a second end for mating with the first fiber optic connector. The adapter includes a ferrule alignment structure located within an axial cavity of the main body, the ferrule alignment structure including a sleeve mount and a ferrule sleeve, the sleeve mount including an axial bore and at least one latching hook extending from a center portion of the sleeve mount toward the first end of the main body and at least one latching hook extending from the center portion toward the second end of the main body, the latching hooks configured to flex for releasably latching the first and second fiber optic connectors to the fiber optic adapter.
    Type: Application
    Filed: September 21, 2017
    Publication date: May 10, 2018
    Inventor: Keith Nelson
  • Patent number: 9945914
    Abstract: A nonlinear terahertz (THz) spectroscopy technique uses a sample illuminated by two THz pulses separately. The illumination generates two signals BA and BB, corresponding to the first and second THz pulse, respectively, after interaction with the sample. The interaction includes excitation of at least one ESR transition in the sample. The sample is also illuminated by the two THz pulses together, with an inter-pulse delay ?, generating a third signal BAB. A nonlinear signal BNL is then derived via BNL=BAB?BA?BB. This nonlinear signal BNL can be then processed (e.g., Fourier transform) to study the properties of the sample.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: April 17, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Harold Young Hwang, Jian Lu, Yaqing Zhang, Benjamin K. Ofori-Okai, Keith A. Nelson, Xian Li
  • Publication number: 20180011031
    Abstract: Quality control of a periodic structure is performed using the damping rate of acoustic waves generated in the periodic structure. In this technique, an excitation light beam illuminates the first layer in the periodic structure to excite an acoustic wave. Possible irregularities in the periodic structure can scatter the acoustic wave, thereby increasing the damping rate of the acoustic wave. A sequence of probe light beams illuminates the periodic structure to measure the acoustic wave as a function of time to generated a temporal signal representing the damping rate of the acoustic signal. The acquired damping rate is employed to evaluate the quality of the periodic structure.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 11, 2018
    Inventors: Alexei Maznev, Keith A. NELSON, Abdelhak BENSAOULA, Jateen S. GANDHI, Donna Washington STOKES, Rebecca Lynne FORREST, Hyun Doug SHIN
  • Publication number: 20170336482
    Abstract: A nonlinear terahertz (THz) spectroscopy technique uses a sample illuminated by two THz pulses separately. The illumination generates two signals BA and BB, corresponding to the first and second THz pulse, respectively, after interaction with the sample. The interaction includes excitation of at least one ESR transition in the sample. The sample is also illuminated by the two THz pulses together, with an inter-pulse delay ?, generating a third signal BAB. A nonlinear signal BNL is then derived via BNL=BAB?BA?BB. This nonlinear signal BNL can be then processed (e.g., Fourier transform) to study the properties of the sample.
    Type: Application
    Filed: May 19, 2017
    Publication date: November 23, 2017
    Inventors: Harold Young HWANG, Jian Lu, Yaqing Zhang, Benjamin K. Ofori-Okai, Keith A. Nelson, Xian Li
  • Patent number: D807092
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: January 9, 2018
    Assignee: Sender's Construction, LLC
    Inventor: Keith Nelson
  • Patent number: D826612
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: August 28, 2018
    Assignee: Sender's Construction, LLC
    Inventor: Keith Nelson
  • Patent number: D846931
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: April 30, 2019
    Assignee: Sender's Construction, LLC
    Inventor: Keith Nelson
  • Patent number: D854868
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: July 30, 2019
    Assignee: Sender's Construction, LLC
    Inventor: Keith Nelson
  • Patent number: D868519
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: December 3, 2019
    Assignee: Sender's Construction, LLC
    Inventor: Keith Nelson