Patents by Inventor Kelly D. Linden

Kelly D. Linden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8622549
    Abstract: A beam combiner has a first coating on a first side capable of imparting a first polarization rotation, and a second coating on a second side capable of imparting a second polarization rotation. A first beam impinging on the first side passes through the first and second coatings as a first beam component. Second and third beams impinging on the second side partially reflect off the second coating as a second beam component, and partially transmit through the second coating to reflect off the first coating and exit through the second coating as a third beam component. The first, second and third beam components are disposed at selected positions and have respective selected polarizations as a combined beam spot. The positions and polarization of the beams components result in a projected image having increased allowable brightness and/or having reduced speckle.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: January 7, 2014
    Assignee: Microvision, Inc.
    Inventors: Kelly D. Linden, Joshua O. Miller
  • Patent number: 8579443
    Abstract: Briefly, in accordance with one or more embodiments, a scanned beam display, comprises a light source to generate a beam to be scanned and a scanning platform to scan the beam into an exit cone. The scanning platform receives the beam at a selected feed angle, and the scanning platform has a surface structure to redirect the exit cone at an exit angle that is less than the feed angle.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 12, 2013
    Assignee: Microvision, Inc.
    Inventors: Joshua M. Hudman, Wyatt O. Davis, Mark O. Freeman, Mark P. Helsel, David Roy Bowman, Kelly D. Linden
  • Publication number: 20130003021
    Abstract: A beam combiner has a first coating on a first side capable of imparting a first polarization rotation, and a second coating on a second side capable of imparting a second polarization rotation. A first beam impinging on the first side passes through the first and second coatings as a first beam component. Second and third beams impinging on the second side partially reflect off the second coating as a second beam component, and partially transmit through the second coating to reflect off the first coating and exit through the second coating as a third beam component. The first, second and third beam components are disposed at selected positions and have respective selected polarizations as a combined beam spot. The positions and polarization of the beams components result in a projected image having increased allowable brightness and/or having reduced speckle.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: Microvision, Inc.
    Inventors: Kelly D. Linden, Joshua O. Miller
  • Patent number: 8274522
    Abstract: An image generation apparatus provides interpolation and distortion correction. The interpolation and distortion correction may be provided in one or two dimensions. Nonlinear image scan trajectories, such as sinusoidal and bi-sinusoidal trajectories are accommodated. Horizontal and vertical scan positions are determined using a linear pixel clock, and displayed pixel intensities are determined using interpolation techniques.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: September 25, 2012
    Assignee: Microvision, Inc.
    Inventors: Margaret K. Brown, Mark O. Freeman, Mark Champion, Kelly D. Linden, Aarti Raghavan, Shawn M. Swilley
  • Publication number: 20120001834
    Abstract: Briefly, in accordance with one or more embodiments, a scanned beam display, comprises a light source to generate a beam to be scanned and a scanning platform to scan the beam into an exit cone. The scanning platform receives the beam at a selected feed angle, and the scanning platform has a surface structure to redirect the exit cone at an exit angle that is less than the feed angle.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: MICROVISION, INC.
    Inventors: Joshua M. Hudman, Wyatt O. Davis, Mark O. Freeman, Mark P. Helsel, David Roy Bowman, Kelly D. Linden
  • Patent number: 8068115
    Abstract: An image generation apparatus provides interpolation and distortion correction. The interpolation and distortion correction may be provided in one or two dimensions. Nonlinear image scan trajectories, such as sinusoidal and bi-sinusoidal trajectories are accommodated. Horizontal and vertical scan positions are determined using a linear pixel clock, and displayed pixel intensities are determined using interpolation techniques.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: November 29, 2011
    Assignee: Microvision, Inc.
    Inventors: Margaret K. Brown, Mark O. Freeman, Mark Champion, Aarti Raghavan, Shawn M. Swilley, Kelly D. Linden
  • Publication number: 20110069084
    Abstract: An image generation apparatus provides interpolation and distortion correction. The interpolation and distortion correction may be provided in one or two dimensions. Nonlinear image scan trajectories, such as sinusoidal and bi-sinusoidal trajectories are accommodated. Horizontal and vertical scan positions are determined using a linear pixel clock, and displayed pixel intensities are determined using interpolation techniques.
    Type: Application
    Filed: December 1, 2010
    Publication date: March 24, 2011
    Applicant: MICROVISION, INC.
    Inventors: Margaret K. Brown, Mark O. Freeman, Mark Champion, Aarti Raghavan, Shawn M. Swilley, Kelly D. Linden
  • Patent number: 7485485
    Abstract: Devices are formed on a semiconductor wafer in an interdigitated relationship and are released by deep reactive ion etching. MEMS scanners are formed without a surrounding frame. Mounting pads extend outward from torsion arms. Neighboring MEMS scanners are formed with their mounting pads interdigitated such that a regular polygon cannot be formed around a device without also intersecting a portion of one or more neighboring devices. MEMS scanners may be held in their outlines by a metal layer, by small semiconductor bridges, or a combination.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: February 3, 2009
    Assignee: Microvision, Inc.
    Inventors: Kelly D. Linden, Mark P. Helsel, Dean R. Brown, Randall B. Sprague, Wyatt O. Davis
  • Patent number: 6236543
    Abstract: Durable landing pads for a slider air-bearing surface (ABS) are formed of tetrahedral amorphous carbon (t-aC) by filtered cathodic arc deposition. A hard carbon overcoat of the ABS is pierced to anchor the pads. The t-aC is extremely hard and highly stressed, and the pads may be laminated with a stress-relieving material. A rotating angled etching such as ion milling may be performed to undercut the hard carbon overcoat and further anchor the pads. A rotating angled deposition of t-aC may also be performed to round the pad tops, which may be trimmed to smooth corners.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: May 22, 2001
    Assignee: Read-Rite Corporation
    Inventors: Hua Han, Kelly D. Linden, Francis W. Ryan, Lee C. Boman