Patents by Inventor Kelly T. R. Boothby

Kelly T. R. Boothby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118797
    Abstract: A user interface (UI), data structures and algorithms facilitate programming, analyzing, debugging, embedding, and/or modifying problems that are embedded or to be embedded on an analog processor (e.g., quantum processor), increasing computational efficiency and/or accuracy of problem solutions. The UI provides graph representations (e.g., source graph, target graph and correspondence therebetween) with nodes and edges which may map to hardware components (e.g., qubits, couplers) of the analog processor. Characteristics of solutions are advantageously represented spatially associated (e.g., overlaid or nested) with characteristics of a problem. Characteristics (e.g., bias state) may be represented by color, pattern, values, icons. Issues (e.g., broken chains) may be detected and alerts provided.
    Type: Application
    Filed: June 2, 2023
    Publication date: April 11, 2024
    Inventors: Murray C. Thom, Fiona L. Hanington, Alexander Condello, William W. Bernoudy, Melody C. Wong, Aidan P. Roy, Kelly T. R. Boothby, Edward D. Dahl
  • Publication number: 20240086748
    Abstract: The systems, devices, articles, and methods described herein generally relate to analog computers, for example quantum processors comprising qubits, couplers, and, or cavities. Analog computers, for example quantum processor based computers, are the subject of various sources of error which can hinder operation, potentially reducing computational accuracy and speed. Sources of error can be broadly characterized, for example as i) a background susceptibility do to inherently characteristics of the circuitry design, ii) as an h/J ratio imbalance, iii) bit flip errors, iv) fidelity, and v) Anderson localization, and various combinations of the aforesaid.
    Type: Application
    Filed: September 13, 2023
    Publication date: March 14, 2024
    Inventors: Paul I. Bunyk, James King, Murray C. Thom, Mohammad H. Amin, Anatoly Smirnov, Sheir Yarkoni, Trevor M. Lanting, Andrew D. King, Kelly T. R. Boothby
  • Patent number: 11900216
    Abstract: Systems and methods are described for operating a hybrid computing system using cluster contraction for converting large, dense input to reduced input that can be easily mapped into a quantum processor. The reduced input represents the global structure of the problem. Techniques involve partitioning the input variables into clusters and contracting each cluster. The input variables can be partitioned using an Unweighted Pair Group Method with Arithmetic Mean algorithm. The quantum processor returns samples based on the reduced input and the samples are expanded to correspond to the original input.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: February 13, 2024
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: James A. King, William W. Bernoudy, Kelly T. R. Boothby, Pau Farré Pérez
  • Patent number: 11861455
    Abstract: A computational method via a hybrid processor comprising an analog processor and a digital processor includes determining a first classical spin configuration via the digital processor, determining preparatory biases toward the first classical spin configuration, programming an Ising problem and the preparatory biases in the analog processor via the digital processor, evolving the analog processor in a first direction, latching the state of the analog processor for a first dwell time, programming the analog processor to remove the preparatory biases via the digital processor, determining a tunneling energy via the digital processor, determining a second dwell time via the digital processor, evolving the analog processor in a second direction until the analog processor reaches the tunneling energy, and evolving the analog processor in the first direction until the analog processor reaches a second classical spin configuration.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: January 2, 2024
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Sheir Yarkoni, Trevor Michael Lanting, Kelly T. R. Boothby, Andrew Douglas King, Evgeny A. Andriyash, Mohammad H. Amin
  • Publication number: 20230385668
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: May 31, 2023
    Publication date: November 30, 2023
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Patent number: 11797874
    Abstract: The systems, devices, articles, and methods described herein generally relate to analog computers, for example quantum processors comprising qubits, couplers, and, or cavities. Analog computers, for example quantum processor based computers, are the subject of various sources of error which can hinder operation, potentially reducing computational accuracy and speed. Sources of error can be broadly characterized, for example as i) a background susceptibility do to inherently characteristics of the circuitry design, ii) as an h/J ratio imbalance, iii) bit flip errors, iv) fidelity, and v) Anderson localization, and various combinations of the aforesaid.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: October 24, 2023
    Assignee: 1372934 B.C. LTD.
    Inventors: Paul I. Bunyk, James King, Murray C. Thom, Mohammad H. Amin, Anatoly Smirnov, Sheir Yarkoni, Trevor M. Lanting, Andrew D. King, Kelly T. R. Boothby
  • Publication number: 20230297869
    Abstract: A superconducting integrated circuit has a first superconducting device with a first superconducting loop, where the first superconducting loop has a first superconducting trace in a first layer of the superconducting integrated circuit, and a second superconducting device with a second superconducting loop, where the second superconducting loop has a second superconducting trace in a second layer. The first superconducting loop crosses the second superconducting loop in a crossing region. At least a portion of each of the first and the second superconducting trace inside the crossing region is narrower than at least a portion of each of the traces outside the crossing region, and follows a respective circuitous path which is inductively proximate to at least a portion of the other path.
    Type: Application
    Filed: June 29, 2021
    Publication date: September 21, 2023
    Inventors: Paul I. Bunyk, Reza Molavi, Kelly T.R. Boothby, Mark H. Volkmann
  • Patent number: 11730066
    Abstract: Approaches useful to operation of scalable processors with ever larger numbers of logic devices (e.g., qubits) advantageously take advantage of QFPs, for example to implement shift registers, multiplexers (i.e., MUXs), de-multiplexers (i.e., DEMUXs), and permanent magnetic memories (i.e., PMMs), and the like, and/or employ XY or XYZ addressing schemes, and/or employ control lines that extend in a “braided” pattern across an array of devices. Many of these described approaches are particularly suited for implementing input to and/or output from such processors. Superconducting quantum processors comprising superconducting digital-analog converters (DACs) are provided. The DACs may use kinetic inductance to store energy via thin-film superconducting materials and/or series of Josephson junctions, and may use single-loop or multi-loop designs. Particular constructions of energy storage elements are disclosed, including meandering structures.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: August 15, 2023
    Assignee: 1372934 B.C. LTD.
    Inventors: Mark W. Johnson, Paul I. Bunyk, Andrew J. Berkley, Richard G. Harris, Kelly T. R. Boothby, Loren J. Swenson, Emile M. Hoskinson, Christopher B. Rich, Jan E. S. Johansson
  • Patent number: 11704012
    Abstract: A user interface (UI), data structures and algorithms facilitate programming, analyzing, debugging, embedding, and/or modifying problems that are embedded or to be embedded on an analog processor (e.g., quantum processor), increasing computational efficiency and/or accuracy of problem solutions. The UI provides graph representations (e.g., source graph, target graph and correspondence therebetween) with nodes and edges which may map to hardware components (e.g., qubits, couplers) of the analog processor. Characteristics of solutions are advantageously represented spatially associated (e.g., overlaid or nested) with characteristics of a problem. Characteristics (e.g., bias state) may be represented by color, pattern, values, icons. Issues (e.g., broken chains) may be detected and alerts provided.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: July 18, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Murray C. Thom, Fiona L. Hanington, Alexander Condello, William W. Bernoudy, Melody C. Wong, Aidan P. Roy, Kelly T. R. Boothby, Edward D. Dahl
  • Patent number: 11704586
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: July 18, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Publication number: 20230169378
    Abstract: Systems and methods are described for operating a hybrid computing system using cluster contraction for converting large, dense input to reduced input that can be easily mapped into a quantum processor. The reduced input represents the global structure of the problem. Techniques involve partitioning the input variables into clusters and contracting each cluster. The input variables can be partitioned using an Unweighted Pair Group Method with Arithmetic Mean algorithm. The quantum processor returns samples based on the reduced input and the samples are expanded to correspond to the original input.
    Type: Application
    Filed: November 16, 2022
    Publication date: June 1, 2023
    Inventors: James A. King, William W. Bernoudy, Kelly T. R. Boothby, Pau Farré Pérez
  • Publication number: 20230143506
    Abstract: Approaches useful to operation of scalable processors with ever larger numbers of logic devices (e.g., qubits) advantageously take advantage of QFPs, for example to implement shift registers, multiplexers (i.e., MUXs), de-multiplexers (i.e., DEMUXs), and permanent magnetic memories (i.e., PMMs), and the like, and/or employ XY or XYZ addressing schemes, and/or employ control lines that extend in a “braided” pattern across an array of devices. Many of these described approaches are particularly suited for implementing input to and/or output from such processors. Superconducting quantum processors comprising superconducting digital-analog converters (DACs) are provided. The DACs may use kinetic inductance to store energy via thin-film superconducting materials and/or series of Josephson junctions, and may use single-loop or multi-loop designs. Particular constructions of energy storage elements are disclosed, including meandering structures.
    Type: Application
    Filed: August 11, 2021
    Publication date: May 11, 2023
    Inventors: Mark W. Johnson, Paul I. Bunyk, Andrew J. Berkley, Richard G. Harris, Kelly T. R. Boothby, Loren J. Swenson, Emile M. Hoskinson, Christopher B. Rich, Jan E. S. Johansson
  • Patent number: 11593695
    Abstract: A hybrid computing system for solving a computational problem includes a digital processor, a quantum processor having qubits and coupling devices that together define a working graph of the quantum processor, and at least one nontransitory processor-readable medium communicatively coupleable to the digital processor which stores at least one of processor-executable instructions or data. The digital processor receives a computational problem, and programs the quantum processor with a first set of bias fields and a first set of coupling strengths. The quantum processor generates samples as potential solutions to an approximation of the problem. The digital processor updates the approximation by determining a second set of bias fields based at least in part on the first set of bias fields and a first set of mean fields that are based at least in part on the first set of samples and coupling strengths of one or more virtual coupling devices.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: February 28, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William W. Bernoudy, Mohammad H. Amin, James A. King, Jeremy P. Hilton, Richard G. Harris, Andrew J. Berkley, Kelly T. R. Boothby
  • Patent number: 11537926
    Abstract: Systems and methods are described for operating a hybrid computing system using cluster contraction for converting large, dense input to reduced input that can be easily mapped into a quantum processor. The reduced input represents the global structure of the problem. Techniques involve partitioning the input variables into clusters and contracting each cluster. The input variables can be partitioned using an Unweighted Pair Group Method with Arithmetic Mean algorithm. The quantum processor returns samples based on the reduced input and the samples are expanded to correspond to the original input.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: December 27, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: James A. King, William W. Bernoudy, Kelly T. R. Boothby, Pau Farré Pérez
  • Publication number: 20220391744
    Abstract: An accelerated version of a node-weighted path distance algorithm is implemented on a microprocessor coupled to a digital processor. The algorithm calculates an embedding of a source graph into a target graph (e.g., hardware graph of a quantum processor). The digital processor causes the microprocessor to send seeds to logic blocks with a corresponding node in the target graph contained in a working embedding of a node, compute a minimum distance to neighboring logic blocks from each seeded logic block, set the distance to neighboring logic blocks as the minimum distance plus the weight of the seeded logic block, increment the accumulator value by the weight of the seeded logic block, increment the accumulator value by the distance, determine the minimum distance logic block by computing the minimum accumulated value, compute distances to the minimum distance logic block; and read distances from all logic blocks into local memory.
    Type: Application
    Filed: June 3, 2022
    Publication date: December 8, 2022
    Inventors: Kelly T.R. Boothby, Peter D. Spear, Mani Ranjbar
  • Publication number: 20220391081
    Abstract: A user interface (UI), data structures and algorithms facilitate programming, analyzing, debugging, embedding, and/or modifying problems that are embedded or to be embedded on an analog processor (e.g., quantum processor), increasing computational efficiency and/or accuracy of problem solutions. The UI provides graph representations (e.g., source graph, target graph and correspondence therebetween) with nodes and edges which may map to hardware components (e.g., qubits, couplers) of the analog processor. Characteristics of solutions are advantageously represented spatially associated (e.g., overlaid or nested) with characteristics of a problem. Characteristics (e.g., bias state) may be represented by color, pattern, values, icons. Issues (e.g., broken chains) may be detected and alerts provided.
    Type: Application
    Filed: June 30, 2022
    Publication date: December 8, 2022
    Inventors: Murray C. Thom, Fiona L. Hanington, Alexander Condello, William W. Bernoudy, Melody C. Wong, Aidan P. Roy, Kelly T. R. Boothby, Edward D. Dahl
  • Patent number: 11507871
    Abstract: Topologies for analog computing systems may include cells of qubits which may implement a tripartite graph and cross substantially orthogonally. Qubits may have an H-shape or an l-shape, qubits may change direction within a cell. Topologies may be comprised of two or more different sub-topologies. Qubits may be communicatively coupled to non-adjacent cells by long-range couplers. Long-range couplers may change direction within a cell. A cell may have two or more different type of long-range couplers. A cell may have shifted qubits, more than one type of inter-cell couplers, more than one type of intra-cell couplers and long-range couplers.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: November 22, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Kelly T. R. Boothby, Paul I. Bunyk
  • Patent number: 11494683
    Abstract: Josephson junctions (JJ) may replace primary inductance of transformers to realize galvanic coupling between qubits, advantageously reducing size. A long-range symmetric coupler may include a compound JJ (CJJ) positioned at least approximately at a half-way point along the coupler to advantageously provide a higher energy of a first excited state than that of an asymmetric long-range coupler. Quantum processors may include qubits and couplers with a non-stoquastic Hamiltonian to enhance multi-qubit tunneling during annealing. Qubits may include additional shunt capacitances, e.g., to increase overall quality of a total capacitance and improve quantum coherence. A sign and/or magnitude of an effective tunneling amplitude ?eff of a qubit characterized by a double-well potential energy may advantageously be tuned. Sign-tunable electrostatic coupling of qubits may be implemented, e.g., via resonators, and LC-circuits. YY couplings may be incorporated into a quantum anneaier (e.g., quantum processor).
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 8, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Mohammad H. Amin, Paul I. Bunyk, Trevor M. Lanting, Chunqing Deng, Anatoly Smirnov, Kelly T. R. Boothby, Emile M. Hoskinson, Christopher B. Rich
  • Publication number: 20220335320
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: May 9, 2022
    Publication date: October 20, 2022
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Patent number: 11422958
    Abstract: A quantum processor performs input and output which may be performed synchronously. The quantum processor executes a problem to generate a classical output state, which is read out at least partially by an I/O system. The I/O system also transmits a classical input state to by the I/O system, which may include the same qubit-proximate devices used for read-out. The classical input state is written to the qubits, and the quantum processor executes based on the classical input state (e.g., by performing reverse annealing to transform the classical input state to quantum state).
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: August 23, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Kelly T.R. Boothby, Andrew J. Berkley, Christopher B. Rich