Patents by Inventor Ken Arnold

Ken Arnold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220175580
    Abstract: Methods of treating an eye are provided that entail partially penetrating the sclera and delivering light energy from an optical fiber within the penetration to treat the a target tissue in the eye, for example, to coagulate vasculature underlying the sclera within a planned incision area. Also provided are treatment probes for treating an eye of a patient includes an elongate body that defines a handle and an advanceable penetrating member and optical fiber housed within the elongate body. The probe is configured to advance the penetrating member so as to penetrate the sclera, only partially, and advance the treatment fiber into the penetration to deliver treatment light energy to coagulate the vasculature underlying the sclera. The probe can include one or more penetrating members and corresponding optical fibers to form one or more penetrations concurrently within the planned incision area.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 9, 2022
    Applicant: IRIDEX Corporation
    Inventors: Ken Arnold, George Marcellino
  • Patent number: 9277853
    Abstract: An endoscope for an optical fiber provides for inflow and outflow of irrigant. A telescope is included having a field of view directed into a working region. The endoscope defines a “hooded region” with an extended, blunt tip. The optical fiber fits within the endoscope has a side or end firing tip with an emission surface. A guide element is adapted to movably support the optical fiber in a position spaced away from the working region, and limit lateral movement of the tip without preventing longitudinal and rotational movement. An irrigant flow arrangement operates to direct inflowing irrigant over the emission surface of the tip. The fiber is assembled with a fiber coupler, a handle, a fiber port cap, and a travel limiter fixed to the fiber at a predetermined distance from the tip. The travel limiter cooperates with the endoscope and the fiber port cap to limit longitudinal and rotational movement of the fiber.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: March 8, 2016
    Assignee: AMS Research, LLC
    Inventors: Kester Nahen, Ken Arnold, Steven Yihlih Peng, James Raymond Kermode
  • Patent number: 7837091
    Abstract: A method for operating a laser system for a medical procedure, or a similar system, comprises detecting presence of a portable memory device like a smart card coupled to the laser system, and reading data on the portable memory device usable to identify an associated delivery device. An identifier is read from the associated delivery device after it is coupled to the laser. A process is executed to verify the configuration including matching the identifier read from delivery device with the delivery device associated with the portable memory device, verifying that the portable memory device includes a data structure adapted for storage of an event log, and enabling delivery of laser energy if said authenticating and said verifying are successful. A kit comprising a delivery device and a portable memory device supporting the process is provided to users of the laser system.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: November 23, 2010
    Assignee: Laserscope
    Inventors: David W. Cook, Ken Arnold
  • Publication number: 20080262485
    Abstract: A method for photoselective vaporization of prostate tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 60 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Application
    Filed: June 24, 2008
    Publication date: October 23, 2008
    Applicant: Laserscope
    Inventors: SCOTT A. DAVENPORT, Steven C. Murray, Tony D. Coleman, Henry Garlich, Ken Arnold, Kester Nahen
  • Publication number: 20070270788
    Abstract: An endoscope for an optical fiber provides for inflow and outflow of irrigant. A telescope is included having a field of view directed into a working region. The endoscope defines a “hooded region” with an extended, blunt tip. The optical fiber fits within the endoscope has a side or end firing tip with an emission surface. A guide element is adapted to movably support the optical fiber in a position spaced away from the working region, and limit lateral movement of the tip without preventing longitudinal and rotational movement. An irrigant flow arrangement operates to direct inflowing irrigant over the emission surface of the tip. The fiber is assembled with a fiber coupler, a handle, a fiber port cap, and a travel limiter fixed to the fiber at a predetermined distance from the tip. The travel limiter cooperates with the endoscope and the fiber port cap to limit longitudinal and rotational movement of the fiber.
    Type: Application
    Filed: May 18, 2007
    Publication date: November 22, 2007
    Applicant: AMS RESEARCH CORPORATION
    Inventors: Kester Nahen, Ken Arnold, Steven Yihlih Peng, James Raymond Kermode
  • Publication number: 20070270647
    Abstract: A multifunction endoscope handle comprises a body cover, a first body cover extension and a second body cover extension. The body cover comprises distal and proximal ends with a waist of therebetween. The proximal and distal end circumferences part each larger than the waist circumference. The body cover also comprises an outer surface tapering from the distal and proximal ends to the waist. Both of the first and second body cover extensions extend radially outwardly directions from the outer surface of the body cover. In some embodiments the proximal circumference is larger than the distal circumference. The outer surface is preferably a smoothly tapering outer surface. The body cover may comprise a plurality of ports at a proximal portion thereof.
    Type: Application
    Filed: January 31, 2007
    Publication date: November 22, 2007
    Applicant: AMS Research Corporation
    Inventors: Kester Nahen, Ken Arnold, Douglas G. Stinson, Eduardo Asturias, Victor Lazzaro, James Raymond Kermode
  • Publication number: 20070225696
    Abstract: A method for photoselective vaporization of prostate tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 60 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Application
    Filed: December 21, 2006
    Publication date: September 27, 2007
    Inventors: Scott Davenport, Steven Murray, Tony Coleman, Henry Garlich, Ken Arnold, Kester Nahen
  • Patent number: 7227755
    Abstract: An adapter assembly including a base for supporting a SINCGARS radio and a radio frequency power amplifier, a first connector for electrically connecting with the SINCGARS radio and a second connector for electrically connecting with the power amplifier, a first power supply electrically connected with the first connector and a second power supply and a third power supply, the second power supply and the third power supply each being electrically connected with the second connector.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: June 5, 2007
    Assignee: Perkins Technical Services, Inc.
    Inventors: Ken Arnold, Michael Samuel Hamilton, Frank N. Perkins, III, Hubert Sims, Jr., Jeffrey K. Taylor, Robert A. Walls
  • Publication number: 20060264918
    Abstract: A method for operating a laser system for a medical procedure, or a similar system, comprises detecting presence of a portable memory device like a smart card coupled to the laser system, and reading data on the portable memory device usable to identify an associated delivery device. An identifier is read from the associated delivery device after it is coupled to the laser. A process is executed to verify the configuration including matching the identifier read from delivery device with the delivery device associated with the portable memory device, verifying that the portable memory device includes a data structure adapted for storage of an event log, and enabling delivery of laser energy if said authenticating and said verifying are successful. A kit comprising a delivery device and a portable memory device supporting the process is provided to users of the laser system.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 23, 2006
    Applicant: Laserscope
    Inventors: David Cook, Ken Arnold
  • Patent number: 7063694
    Abstract: A method for photoselective vaporization of uterine tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 60 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: June 20, 2006
    Assignee: Laserscope
    Inventors: Kester Nahen, Steven C. Murray, Scott A. Davenport, Tony D. Coleman, Ken Arnold, Henry Garlich
  • Publication number: 20060084959
    Abstract: A method for photoselective vaporization of prostate tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 60 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Application
    Filed: July 27, 2005
    Publication date: April 20, 2006
    Applicant: Laserscope
    Inventors: Scott Davenport, Steven Murray, Tony Coleman, Henry Garlich, Ken Arnold, Kester Nahen
  • Patent number: 6986764
    Abstract: A method for photoselective vaporization of prostate tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 60 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: January 17, 2006
    Assignee: LASERSCOPE
    Inventors: Scott A. Davenport, Steven C. Murray, Tony D. Coleman, Henry Garlich, Ken Arnold, Kester Nahen
  • Publication number: 20050256513
    Abstract: A method for photoselective vaporization of prostate tissue includes delivering laser radiation to the treatment area on the tissue, under direct visualization, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient to cause vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. An endpoint for a procedure can be determined using the direct visualization.
    Type: Application
    Filed: July 20, 2005
    Publication date: November 17, 2005
    Applicant: Laserscope
    Inventors: Steven Murray, Scott Davenport, Tony Coleman, Henry Garlich, Ken Arnold
  • Publication number: 20050197656
    Abstract: A method for photoselective vaporization of uterine tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 60 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Application
    Filed: April 25, 2005
    Publication date: September 8, 2005
    Applicant: LASERSCOPE
    Inventors: Kester Nahen, Steven Murray, Scott Davenport, Tony Coleman, Ken Arnold, Henry Garlich
  • Publication number: 20050177145
    Abstract: A method for photoselective vaporization of uterine tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 60 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Application
    Filed: April 5, 2005
    Publication date: August 11, 2005
    Applicant: LASERSCOPE
    Inventors: Kester Nahen, Steven Murray, Scott Davenport, Tony Coleman, Ken Arnold, Henry Garlich
  • Publication number: 20050027286
    Abstract: A method for photoselective vaporization of prostate tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber secured using a card key, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 20 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Application
    Filed: June 24, 2004
    Publication date: February 3, 2005
    Applicant: Laserscope
    Inventors: Scott Davenport, Steven Murray, Tony Coleman, Henry Garlich, Ken Arnold, Kester Nahen
  • Publication number: 20040236318
    Abstract: A method for photoselective vaporization of prostate tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics comprising LBO or BBO producing a second or higher harmonic output with greater than 20 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Application
    Filed: June 24, 2004
    Publication date: November 25, 2004
    Applicant: Laserscope
    Inventors: Scott A. Davenport, Steven C. Murray, Tony D. Coleman, Henry Garlich, Ken Arnold, Kester Nahen
  • Publication number: 20040236319
    Abstract: A method for photoselective vaporization of prostate tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a diode-pumped neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 20 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Application
    Filed: June 24, 2004
    Publication date: November 25, 2004
    Applicant: Laserscope
    Inventors: Scott A. Davenport, Steven C. Murray, Tony D. Coleman, Henry Garlich, Ken Arnold, Kester Nahen
  • Publication number: 20030216717
    Abstract: A method for photoselective vaporization of uterine tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 60 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 run to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Application
    Filed: February 21, 2003
    Publication date: November 20, 2003
    Applicant: LASERSCOPE
    Inventors: Kester Nahen, Steven C. Murray, Scott A. Davenport, Tony D. Coleman, Ken Arnold, Henry Garlich
  • Publication number: 20030135205
    Abstract: A method for photoselective vaporization of prostate tissue includes delivering laser radiation to the treatment area on the tissue, via an optical fiber for example, wherein the laser radiation has a wavelength and irradiance in the treatment area on the surface of the tissue sufficient because vaporization of a substantially greater volume of tissue than a volume of residual coagulated tissue caused by the laser radiation. The laser radiation is generated using a neodymium doped solid-state laser, including optics producing a second or higher harmonic output with greater than 60 watts average output power. The delivered laser radiation has a wavelength for example in a range of about 200 nm to about 650 nm, and has an average irradiance in the treatment area greater than about 10 kilowatts/cm2, in a spot size of at least 0.05 mm2.
    Type: Application
    Filed: October 23, 2002
    Publication date: July 17, 2003
    Inventors: Scott A. Davenport, Steven C. Murray, Tony D. Coleman, Henry Garlich, Ken Arnold, Kester Nahen