Patents by Inventor Keng-Chu Lin

Keng-Chu Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230024022
    Abstract: A semiconductor structure includes a semiconductor substrate and an isolation structure disposed in the semiconductor substrate, wherein the isolation structure includes a first dielectric layer in contact with the semiconductor substrate and a second dielectric layer over the first dielectric layer, wherein the first dielectric layer is between the second dielectric layer and the semiconductor substrate, the first dielectric layer comprises a bottom portion and a sidewall portion, and a thickness of the bottom portion is greater than a thickness of the sidewall portion.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 26, 2023
    Inventors: HUNG-YU YEN, KO-FENG CHEN, KENG-CHU LIN
  • Publication number: 20230016100
    Abstract: The present disclosure describes a method for forming liner-free or barrier-free conductive structures. The method includes depositing an etch stop layer on a cobalt contact disposed on a substrate, depositing a dielectric on the etch stop layer, etching the dielectric and the etch stop layer to form an opening that exposes a top surface of the cobalt contact, and etching the exposed top surface of the cobalt contact to form a recess in the cobalt contact extending laterally under the etch stop layer. The method further includes depositing a ruthenium metal to substantially fill the recess and the opening, and annealing the ruthenium metal to form an oxide layer between the ruthenium metal and the dielectric.
    Type: Application
    Filed: July 28, 2022
    Publication date: January 19, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO.,LTD.
    Inventors: Hsu-Kai CHANG, Keng-Chu LIN, Sung-Li WANG, Shuen-Shin LIANG, Chia-Hung CHU
  • Publication number: 20230015572
    Abstract: The present disclosure describes a semiconductor device that includes a transistor. The transistor includes a source/drain region that includes a front surface and a back surface opposite to the front surface. The transistor includes a salicide region on the back surface and a channel region in contact with the source/drain region. The channel region has a front surface co-planar with the front surface of the source/drain region. The transistor further includes a gate structure disposed on a front surface of the channel region. The semiconductor device also includes a backside contact structure that includes a conductive contact in contact with the salicide region and a liner layer surrounding the conductive contact.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 19, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mrunal Abhijith KHADERBAD, Keng-Chu LIN, Yu-Yun PENG
  • Publication number: 20230008496
    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, first and second contact structures proximate to each other and over the substrate, and first and second dielectric layers formed over the first and second contact structures, respectively. A top portion of the first dielectric layer can include a first dielectric material. A bottom portion of the first dielectric layer can include a second dielectric material different from the first dielectric material. The second dielectric layer can include a third dielectric material different from the first dielectric material.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mrunal Abhijith Khaderbad, Keng-Chu Lin, Ko-Feng Chen, Yu-Yun Peng
  • Publication number: 20230009144
    Abstract: A semiconductor device with densified dielectric structures and a method of fabricating the same are disclosed. The method includes forming a fin structure, forming an isolation structure adjacent to the fin structure, forming a source/drain (S/D) region on the fin structure, depositing a flowable dielectric layer on the isolation structure, converting the flowable dielectric layer into a non-flowable dielectric layer, performing a densification process on the non-flowable dielectric layer, and repeating the depositing, converting, and performing to form a stack of densified dielectric layers surrounding the S/D region.
    Type: Application
    Filed: February 2, 2022
    Publication date: January 12, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Hung LIN, Ko-Feng CHEN, Keng-Chu LIN
  • Publication number: 20230012147
    Abstract: The present disclosure describes a method to form a semiconductor device with backside contact structures. The method includes forming a semiconductor device on a first side of a substrate. The semiconductor device includes a source/drain (S/D) region. The method further includes etching a portion of the S/D region on a second side of the substrate to form an opening and forming an epitaxial contact structure on the S/D region in the opening. The second side is opposite to the first side. The epitaxial contact structure includes a first portion in contact with the S/D region in the opening and a second portion on the first portion. A width of the second portion is larger than the first portion.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Hung CHU, Ding-Kang SHIH, Keng-Chu LIN, Pang-Yen TSAI, Sung-Li WANG, Shuen-Shin LIANG, Tsungyu HUNG, Hsu-Kai CHANG
  • Publication number: 20230009077
    Abstract: A semiconductor device with different configurations of contact structures and a method of fabricating the same are disclosed. The method includes forming first and second fin structures on a substrate, forming n- and p-type source/drain (S/D) regions on the first and second fin structures, respectively, forming first and second contact openings on the n- and p-type S/D regions, respectively, forming a carbon-based layer in the first and second contact openings, performing a remote plasma treatment with radicals on the carbon-based layer to form a remote plasma treated layer, selectively removing a portion of the remote plasma treated layer, forming a p-type work function metal (pWFM) silicide layer on the p-type S/D region, and forming an n-type work function metal (nWFM) silicide layer on the pWFM silicide layer and on the n-type S/D region.
    Type: Application
    Filed: February 25, 2022
    Publication date: January 12, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin LIANG, Huan-Chieh SU, Lo-Heng CHANG, Shih-Chuan CHIU, Hsu-Kai CHANG, Ko-Feng CHEN, Keng-Chu LIN, Pinyen LIN, Sung-Li WANG
  • Patent number: 11545397
    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The method can include forming a fin structure over a substrate. The fin structure can include a channel layer and a sacrificial layer. The method can further include forming a first recess structure in a first portion of the fin structure, forming a second recess structure in the sacrificial layer of a second portion of the fin structure, forming a dielectric layer in the first and second recess structures, and performing an oxygen-free cyclic etching process to etch the dielectric layer to expose the channel layer of the second portion of the fin structure. The oxygen-free cyclic etching process can include two etching processes to selectively etch the dielectric layer over the channel layer.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Han-Yu Lin, Jhih-Rong Huang, Yen-Tien Tung, Tzer-Min Shen, Fu-Ting Yen, Gary Chan, Keng-Chu Lin, Li-Te Lin, Pinyen Lin
  • Publication number: 20220415696
    Abstract: The present disclosure describes a method to form a bonded semiconductor structure. The method includes forming a first bonding layer on a first wafer, forming a debonding structure on a second wafer, forming a second bonding layer on the debonding structure, bonding the first and second wafers with the first and second bonding layers, and debonding the second wafer from the first wafer via the debonding structure. The debonding structure includes a first barrier layer, a second barrier layer, and a water-containing dielectric layer between the first and second barrier layers.
    Type: Application
    Filed: March 23, 2022
    Publication date: December 29, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Ting YEH, Zheng Yong Liang, De-Yang Chiou, Yu-Yun Peng, Keng-Chu Lin
  • Patent number: 11521929
    Abstract: The present disclosure describes a method for forming capping layers configured to prevent the migration of out-diffused cobalt atoms into upper metallization layers In some embodiments, the method includes depositing a cobalt diffusion barrier layer on a liner-free conductive structure that includes ruthenium, where depositing the cobalt diffusion barrier layer includes forming the cobalt diffusion barrier layer self-aligned to the liner-free conductive structure. The method also includes depositing, on the cobalt diffusion barrier layer, a stack with an etch stop layer and dielectric layer, and forming an opening in the stack to expose the cobalt diffusion barrier layer. Finally, the method includes forming a conductive structure on the cobalt diffusion barrier layer.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: December 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin Liang, Chun-I Tsai, Chih-Wei Chang, Chun-Hsien Huang, Hung-Yi Huang, Keng-Chu Lin, Ken-Yu Chang, Sung-Li Wang, Chia-Hung Chu, Hsu-Kai Chang
  • Patent number: 11522074
    Abstract: A semiconductor device includes a substrate, a first semiconductor fin, a second semiconductor fin, a gate structure, a plurality of source/drain structures, a shallow trench isolation (STI) oxide, and a dielectric layer. The first semiconductor fin extends upwardly from the substrate. The second semiconductor fin extends upwardly from the substrate. The gate structure extends across the first and second semiconductor fins. The source/drain structures are on the first and second semiconductor fins. The STI oxide extends continuously between the first and second semiconductor fins and has a U-shaped profile when viewed in a cross section taken along a lengthwise direction of the gate structure. The dielectric layer is partially embedded in the STI oxide and has a U-shaped profile when viewed in the cross section taken along the lengthwise direction of the gate structure.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: December 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Ching, Kuan-Lun Cheng, Chih-Hao Wang, Keng-Chu Lin, Shi-Ning Ju
  • Publication number: 20220384265
    Abstract: The present disclosure is directed to method for the fabrication of spacer structures between source/drain epitaxial structures and metal gate structures in nanostructure transistors. The method includes forming a fin structure with alternating first and second nanostructure elements on a substrate. The method also includes etching edge portions of the first nanostructure elements in the fin structure to form spacer cavities, and depositing a spacer layer on the fin structure to fill the spacer cavities. Further, treating the spacer layer with a microwave-generated plasma to form an oxygen concentration gradient within the spacer layer outside the spacer cavities and removing, with an etching process, the treated portion of the spacer layer. During the etching process, a removal rate of the etching process for the treated portion of the spacer layer is based on an oxygen concentration within the oxygen concentration gradient.
    Type: Application
    Filed: August 10, 2022
    Publication date: December 1, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Mrunal Abhijith KHADERBAD, Keng-Chu LIN, Yu-Yun PENG
  • Publication number: 20220384439
    Abstract: An integrated circuit (IC) device includes a semiconductor substrate having a first plurality of stacked semiconductor layers in a p-type transistor region and a second plurality of stacked semiconductor layers in a n-type transistor region. A gate dielectric layer wraps around each of the first and second plurality of stacked semiconductor layers. A first metal gate in the p-type transistor region has a work function metal layer and a first fill metal layer, where the work function metal layer wraps around and is in direct contact with the gate dielectric layer and the first fill metal layer is in direct contact with the work function metal layer. A second metal gate in the n-type transistor region has a second fill metal layer that is in direct contact with the gate dielectric layer, where the second fill metal layer has a work function about equal to or lower than 4.3 eV.
    Type: Application
    Filed: July 22, 2022
    Publication date: December 1, 2022
    Inventors: Mrunal A Khaderbad, Ziwei Fang, Keng-Chu Lin, Hsueh Wen Tsau
  • Patent number: 11512246
    Abstract: A luminescent material includes a particle of an irregular shape. The particle of an irregular shape includes a core of an irregular shape and quantum dots. The quantum dots distribute on the core.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 29, 2022
    Assignee: CHIMEI CORPORATION
    Inventors: Yuan-Ren Juang, Szu-Chun Yu, Keng-Chu Lin, Wei-Ta Chen, Yao-Tsung Chuang, Jen-Shrong Uen
  • Publication number: 20220367278
    Abstract: The present disclosure describes a method of fabricating a semiconductor structure that includes forming a fin structure on a substrate, forming a polysilicon gate structure on a first portion of the fin structure, forming an opening in a second portion of the fin structure, wherein the first and second portions of the fin structure is adjacent to each other, forming a recess laterally on a sidewall of the first portion of the fin structure underlying the polysilicon gate structure, and forming an inner spacer structure within the recess. The inner spacer structure comprises an inner air spacer enclosed by a first dielectric spacer layer and a second dielectric spacer layer.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 17, 2022
    Applicant: Taiwan Semiconductor Manufafacturing Co, Ltd.
    Inventors: Chen-Han WANG, Keng-Chu LIN, Shuen-Shin LIANG, Tetsuji UENO, Ting-Ting CHEN
  • Publication number: 20220367662
    Abstract: The present disclosure describes a method for forming liner-free or barrier-free conductive structures. The method includes forming a liner-free conductive structure on a cobalt conductive structure disposed on a substrate, depositing a cobalt layer on the liner-free conductive structure and exposing the liner-free conductive structure to a heat treatment. The method further includes removing the cobalt layer from the liner-free conductive structure.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Applicant: Taiwan Semiconductor Manufacturing, Co., Ltd.
    Inventors: Shuen-Shin Liang, Chun-I Tsai, Chih-Wei Chang, Chun-Hsien Huang, Hung-Yi Huang, Keng-Chu Lin, Ken-Yu Chang, Sung-Li Wang, Chia-Hung Chu, Hsu-Kai Chang
  • Publication number: 20220367660
    Abstract: The present disclosure describes a method for forming metallization layers that include a ruthenium metal liner and a cobalt metal fill. The method includes depositing a first dielectric on a substrate having a gate structure and source/drain (S/D) structures, forming an opening in the first dielectric to expose the S/D structures, and depositing a ruthenium metal on bottom and sidewall surfaces of the opening. The method further includes depositing a cobalt metal on the ruthenium metal to fill the opening, reflowing the cobalt metal, and planarizing the cobalt and ruthenium metals to form S/D conductive structures with a top surface coplanar with a top surface of the first dielectric.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 17, 2022
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin Liang, Chih-Chien Chi, Chien-Shun Liao, Keng-Chu Lin, Kai-Ting Huang, Sung-Li Wang, Yi-Ying Liu, Chia-Hung Chu, Hsu-Kai Chang, Cheng-Wei Chang
  • Patent number: 11502166
    Abstract: The present disclosure relates to a semiconductor device including first and second terminals formed on a fin region and a seal layer formed between the first and second terminals. The seal layer includes a silicon carbide material doped with oxygen. The semiconductor device also includes an air gap surrounded by the seal layer, the fin region, and the first and second terminals.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: November 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shuen-Shin Liang, Chen-Han Wang, Keng-Chu Lin, Tetsuji Ueno, Ting-Ting Chen
  • Publication number: 20220359660
    Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor device according to the present disclosure includes a channel member including a first channel layer and a second channel layer over the first channel layer, and a gate structure over the channel member. The first channel layer includes silicon, germanium, a III-V semiconductor, or a II-VI semiconductor and the second channel layer includes a two-dimensional material.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 10, 2022
    Inventors: Mrunal Abhijith Khaderbad, Dhanyakumar Mahaveer Sathaiya, Keng-Chu Lin, Tzer-Min Shen
  • Publication number: 20220352073
    Abstract: An interconnect structure, along with methods of forming such, are described. In some embodiments, the structure includes a first dielectric layer disposed over one or more devices, a first conductive feature disposed in the first dielectric layer, a second dielectric layer disposed over the first dielectric layer and the first conductive feature, and a second conductive feature disposed in the second dielectric layer. The second conductive feature is electrically connected to the first conductive feature. The structure further includes a heat dissipation layer disposed between the first and second dielectric layers, and the heat dissipation layer partially surrounds the second conductive feature and is electrically isolated from the first and second conductive features.
    Type: Application
    Filed: September 13, 2021
    Publication date: November 3, 2022
    Inventors: Yu-Yun PENG, Keng-Chu LIN