Patents by Inventor Keng Foo Lo

Keng Foo Lo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9165920
    Abstract: A tunable protection system including forming a tunable trigger device providing an adjustable protection activation level, forming a circuit protection device providing protection for integrated circuits, and electrically connecting the tunable trigger device and the circuit protection device to an input/output pad.
    Type: Grant
    Filed: October 15, 2005
    Date of Patent: October 20, 2015
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Indrajit Manna, Hin Kiong Yap, Keng Foo Lo, Jae Soo Park
  • Patent number: 7205612
    Abstract: A device and method are described for forming a grounded gate NMOS (GGNMOS) device used to provide protection against electrostatic discharge (ESD) in an integrated circuit (IC). The device is achieved by adding n-wells below the source and drain regions. By tailoring the dopant concentration profiles of the p-well and n-wells provided in the fabrication process, peak dopant concentrations are moved below the silicon surface. This moves ESD conduction deeper into the IC where thermal conductivity is improved, thereby avoiding thermal damage occurring with surface conduction. The device does not require a salicidation block or additional implantation and uses standard NMOS fabrication processing steps, making it advantageous over prior art solutions.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: April 17, 2007
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Cai, Keng Foo Lo
  • Patent number: 7135743
    Abstract: Off-chip driver (OCD) NMOS transistors with ESD protection are formed by interposing an P-ESD implant between the N+ drain regions of OCD NMOS transistors and the N-well such that the P-ESD surrounds a section of the N-well. The P-ESD implant is dosed less than the N+ source/drain implants but higher than the N-well dose. In another embodiment, N-well doping is used along with P-ESD doping, where the P-ESD doping is chosen such that it counterdopes the N-well underneath the N+ drains. The N-well, however, still maintains electrical connection to the N+ drains. This procedure creates a larger surface under the area where the junction breakdown occurs and an increased radius of curvature of the junction. The P-ESD implant is covered by N-type on three sides creating better parasitic bipolar transistor characteristics.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: November 14, 2006
    Assignees: Chartered Semiconductor Manufacturing Ltd., Agilent Technologies, Inc.
    Inventors: Indrajit Manna, Keng Foo Lo, Pee Ya Tan, Michael Cheng
  • Patent number: 7064358
    Abstract: An embodiment is a Electro Static Discharge (ESD) protection device comprising: a n-doped region and a p-doped region in a p-well in a semiconductor structure. The n-doped region and the p-doped region are spaced. A n-well and a deep n-well surrounding the p-well on the sides and bottom. A first I/O pad connected to the n-doped region. A trigger circuit connected the first I/O pad and the p-doped region. A second I/O pad connected to the n-well. A parasitic bipolar transistor is comprised of the n-doped region that functions as a collector terminal, the P-well that functions as a base terminal, and the deep N-well that functions as the emitter terminal. Whereby under an ESD condition, the p-well is charged positive using the trigger circuit and the parasitic bipolar transistor can be turned on.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: June 20, 2006
    Assignee: Chartered SemiConductor Manufacturing, LTD
    Inventors: Indrajlt Manna, Keng Foo Lo, Pee Ya Tan, Raymond Filippi
  • Patent number: 6998685
    Abstract: Off-chip driver (OCD) NMOS transistors with ESD protection are formed by interposing an P-ESD implant between the N+ drain regions of OCD NMOS transistors and the N-well such that the P-ESD surrounds a section of the N-well. The P-ESD implant is dosed less than the N+ source/drain implants but higher than the N-well dose. In another embodiment, N-well doping is used along with P-ESD doping, where the P-ESD doping is chosen such that it counterdopes the N-well underneath the N+ drains. The N-well, however, still maintains electrical connection to the N+ drains. This procedure creates a larger surface under the area where the junction breakdown occurs and an increased radius of curvature of the junction. The P-ESD implant is covered by N-type on three sides creating better parasitic bipolar transistor characteristics.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: February 14, 2006
    Assignees: Chartered Semiconductor Manufacturing Ltd., Agilent Technologies, Inc.
    Inventors: Indrajit Manna, Keng Foo Lo, Pee Ya Tan, Michael Cheng
  • Patent number: 6936895
    Abstract: A new method to form an integrated circuit device is achieved. The method comprises forming a dielectric layer overlying a semiconductor substrate. An intrinsic semiconductor layer is formed overlying the dielectric layer. The intrinsic semiconductor layer is patterned. A p+ region is formed in the intrinsic semiconductor layer. An n+ region is formed in the intrinsic semiconductor layer. The p+ region and said n+ region are laterally separated by an intrinsic region to thereby form a PIN diode device. A source region and a drain region are formed in the semiconductor substrate to thereby complete a MOSFET device. The PIN diode device is a gate electrode for the MOSFET device.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: August 30, 2005
    Assignees: Chartered Semiconductor Manufacturing Ltd., Agilent Technologies, Inc.
    Inventors: Indrajit Manna, Keng Foo Lo, Pee Ya Tan, Raymond Filippi
  • Patent number: 6855609
    Abstract: A transistor structure is manufactured for ESD protection in an integrated circuit device. A semiconductor substrate has source and drain diffusion regions and respective source and drain wells under the source and drain diffusion regions. A shallow trench isolation formed over the semiconductor substrate and into the semiconductor substrate separates the source and drain diffusion regions and a portion of the source and drain wells. Source and drain contact structures respectively formed on the shallow trench isolation over the source and drain diffusion regions and extend through the shallow trench isolation to contact the source and drain diffusion regions. An ion implantation is performed through the contact openings into the bottoms of the source and drain wells to control the device trigger voltage and position the discharge current far away from the surface, which increases the device ESD performance significantly.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: February 15, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Cai, Guang Ping Hua, Jun Song, Keng Foo Lo
  • Patent number: 6835985
    Abstract: A transistor structure is provided for ESD protection in an integrated circuit device. A semiconductor substrate has source and drain diffusion regions and respective source and drain wells under the source and drain diffusion regions. A shallow trench isolation formed over the semiconductor substrate and into the semiconductor substrate separates the source and drain diffusion regions and a portion of the source and drain wells. Source and drain contact structures respectively formed on the shallow trench isolation over the source and drain diffusion regions and extend through the shallow trench isolation to contact the source and drain diffusion regions. An ion implantation is performed through the contact openings into the bottoms of the source and drain wells to control the device trigger voltage and position the discharge current far away from the surface, which increases the device ESD performance significantly.
    Type: Grant
    Filed: December 9, 2000
    Date of Patent: December 28, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Cai, Guang Ping Hua, Jun Song, Keng Foo Lo
  • Patent number: 6830966
    Abstract: A device and method are described for forming a grounded gate NMOS (GGNMOS) device used to provide protection against electrostatic discharge (ESD) in an integrated circuit (IC). The device is achieved by adding n-wells below the source and drain regions. By tailoring the dopant concentration profiles of the p-well and n-wells provided in the fabrication process, peak dopant concentrations are moved below the silicon surface. This moves ESD conduction deeper into the IC where thermal conductivity is improved, thereby avoiding thermal damage occurring with surface conduction. The device does not require a salicidation block or additional implantation and uses standard NMOS fabrication processing steps, making it advantageous over prior art solutions.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: December 14, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Cai, Keng Foo Lo
  • Publication number: 20040058502
    Abstract: A transistor structure is provided for ESD protection in an integrated circuit device. A semiconductor substrate has source and drain diffusion regions and respective source and drain wells under the source and drain diffusion regions. A shallow trench isolation formed over the semiconductor substrate and into the semiconductor substrate separates the source and drain diffusion regions and a portion of the source and drain wells. Source and drain contact structures respectively formed on the shallow trench isolation over the source and drain diffusion regions and extend through the shallow trench isolation to contact the source and drain diffusion regions. An ion implantation is performed through the contact openings into the bottoms of the source and drain wells to control the device trigger voltage and position the discharge current far away from the surface, which increases the device ESD performance significantly.
    Type: Application
    Filed: September 24, 2003
    Publication date: March 25, 2004
    Applicant: Chartered Semiconductor Manufacturing LTD.
    Inventors: Jun Cai, Guang Ping Hua, Jun Song, Keng Foo Lo
  • Publication number: 20030230780
    Abstract: A device and method are described for forming a grounded gate NMOS (GGNMOS) device used to provide protection against electrostatic discharge (ESD) in an integrated circuit (IC). The device is achieved by adding n-wells below the source and drain regions. By tailoring the dopant concentration profiles of the p-well and n-wells provided in the fabrication process, peak dopant concentrations are moved below the silicon surface. This moves ESD conduction deeper into the IC where thermal conductivity is improved, thereby avoiding thermal damage occurring with surface conduction. The device does not require a salicidation block or additional implantation and uses standard NMOS fabrication processing steps, making it advantageous over prior art solutions.
    Type: Application
    Filed: June 12, 2002
    Publication date: December 18, 2003
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Cai, Keng Foo Lo
  • Patent number: 6555878
    Abstract: Described is a MOS gate-controlled SCR (UGSCR) structure with a U-shaped gate (UMOS) for an ESD protection circuit in an IC device which is compatible with shallow trench isolation (STI) and self-aligned silicide (salicide) fabrication technology. The UMOS gate is located in a p-substrate and is surrounded by an n-well on either side. Adjacent to one side of the UMOS gate, a first n+ diffusion is formed which straddles the first n-well. The n+ diffusion together with a p+ pickup diffused next to it form the cathode of the SCR (thyristor). Adjacent to the other side of the UMOS gate, a second n+ and p+ diffusion are formed in a second n-well. The second n+ and p+ diffusion together with the UMOS gate form the anode of the SCR and the input terminal of the circuit to be protected. The SCR is formed by the first n+ diffusion/n-well (cathode), the p-substrate, the second n-well and the second p+/n+ diffusion (anode).
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: April 29, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Song, Guang ping Hua, Keng-Foo Lo
  • Publication number: 20020195665
    Abstract: Described is a MOS gate-controlled SCR (UGSCR) structure with a U-shaped gate (UMOS) for an ESD protection circuit in an IC device which is compatible with shallow trench isolation (STI) and self-aligned silicide (salicide) fabrication technology. The UMOS gate is located in a p-substrate and is surrounded by an n-well on either side. Adjacent to one side of the UMOS gate, a first n+ diffusion is formed which straddles the first n-well. The n+ diffusion together with a p+ pickup diffused next to it form the cathode of the SCR (thyristor). Adjacent to the other side of the UMOS gate, a second n+ and p+ diffusion are formed in a second n-well. The second n+ and p+ diffusion together with the UMOS gate form the anode of the SCR and the input terminal of the circuit to be protected. The SCR is formed by the first n+ diffusion/n-well (cathode), the p-substrate, the second n-well and the second p+/n+ diffusion (anode).
    Type: Application
    Filed: September 3, 2002
    Publication date: December 26, 2002
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Song Jun, Guang-Ping Hua, Keng-Foo Lo
  • Patent number: 6458632
    Abstract: Described is a method of creating a MOS gate-controlled SCR (UGSCR) structure with a U-shaped gate (UMOS) for an ESD protection circuit in an IC device which is compatible with shallow trench isolation (STI) and self-aligned silicide (salicide) fabrication technology. The UMOS gate is located in a p-substrate and is surrounded by an n-well on either side. Adjacent to one side of the UMOS gate, a first n+ diffusion is formed which straddles the first n-well. The n+ diffusion together with a p+ pickup diffused next to it form the cathode of the SCR (thyristor). Adjacent to the other side of the UMOS gate, a second n+ and p+ diffusion are formed in a second n-well. The second n+ and p+ diffusion together with the UMOS gate form the anode of the SCR and the input terminal of the circuit to be protected. The SCR is formed by the first n+ diffusion/n-well (cathode), the p-substrate, the second n-well and the second p+/n+ diffusion (anode).
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: October 1, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Song, Guang Ping Hua, Keng-Foo Lo
  • Publication number: 20020130365
    Abstract: Described is a MOS gate-controlled SCR (UGSCR) structure with a U-shaped gate (UMOS) for an ESD protection circuit in an IC device which is compatible with shallow trench isolation (STI) and self-aligned suicide (salicide) fabrication technology. The UMOS gate is located in a p-substrate and is surrounded by an n-well on either side. Adjacent to one side of the UMOS gate, a first n+ diffusion is formed which straddles the first n-well. The n+ diffusion together with a p+ pickup diffused next to it form the cathode of the SCR (thyristor). Adjacent to the other side of the UMOS gate, a second n+ and p+ diffusion are formed in a second n-well. The second n+ and p+ diffusion together with the UMOS gate form the anode of the SCR and the input terminal of the circuit to be protected. The SCR is formed by the first n+ diffusion/n-well (cathode), the p-substrate, the second n-well and the second p+ /n+diffusion (anode).
    Type: Application
    Filed: March 14, 2001
    Publication date: September 19, 2002
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Song, Guang Ping Hua, Keng-Foo Lo
  • Publication number: 20020093056
    Abstract: An electrostatic discharge protection structure is provided with a dielectric gate, source and drain contacts, and a semiconductor substrate. The semiconductor substrate is of a first conductivity type having the dielectric gate disposed partially on its surface. The source and drain contacts are connected to source and drain diffusion regions of a second conductivity type separated by the dielectric gate. Deep source and drain wells of the second conductivity type respectively disposed under the source and drain diffusion regions define a channel region of the first conductivity type. The channel region is doped so that the surface breakdown voltage is exceeded before the subsurface depletion region punch-through voltage is exceeded between the deep source and drain wells upon an electrostatic discharge at the drain contact.
    Type: Application
    Filed: January 12, 2001
    Publication date: July 18, 2002
    Inventors: Jun Cai, Keng Foo Lo
  • Patent number: 6417541
    Abstract: An electrostatic discharge protection structure is provided with a dielectric gate, source and drain contacts, and a semiconductor substrate. The semiconductor substrate is of a first conductivity type having the dielectric gate disposed partially on its surface. The source and drain contacts are connected to source and drain diffusion regions of a second conductivity type separated by the dielectric gate. Deep source and drain wells of the second conductivity type respectively disposed under the source and drain diffusion regions define a channel region of the first conductivity type. The channel region is doped so that the surface breakdown voltage is exceeded before the subsurface depletion region punch-through voltage is exceeded between the deep source and drain wells upon an electrostatic discharge at the drain contact.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: July 9, 2002
    Assignee: Chartered Semiconductor Manufacturing LTD
    Inventors: Jun Cai, Keng Foo Lo
  • Publication number: 20020072178
    Abstract: A transistor structure is provided for ESD protection in an integrated circuit device. A semiconductor substrate has source and drain diffusion regions and respective source and drain wells under the source and drain diffusion regions. A shallow trench isolation formed over the semiconductor substrate and into the semiconductor substrate separates the source and drain diffusion regions and a portion of the source and drain wells. Source and drain contact structures respectively formed on the shallow trench isolation over the source and drain diffusion regions and extend through the shallow trench isolation to contact the source and drain diffusion regions. An ion implantation is performed through the contact openings into the bottoms of the source and drain wells to control the device trigger voltage and position the discharge current far away from the surface, which increases the device ESD performance significantly.
    Type: Application
    Filed: December 9, 2000
    Publication date: June 13, 2002
    Inventors: Jun Cai, Guang Ping Hua, Jun Song, Keng Foo Lo
  • Patent number: 6310380
    Abstract: A MOS transistor structure is provided for ESD protection in an integrated circuit device. A trench controls salicide deposition to prevent hot spot formation and allows control of the turn-on voltage. The structure includes source and drain diffusion regions formed in the silicon substrate, a gate, and n-wells formed under the source and drain diffusions on either side of the gate. A drain trench is located to separate the salicide between a drain contact and the gate edge, and by controlling the size and location of the drain trench, the turn-on voltages can be controlled; i.e., the turn-on voltage due to drain diffusion region to substrate avalanche breakdown and the turn-on voltage due to source well to drain well punch-through. Thus, very low turn-on voltages may be achieved for ESD protection.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: October 30, 2001
    Assignee: Chartered Semiconductor Manufacturing, Inc.
    Inventors: Jun Cai, Keng Foo Lo
  • Patent number: 6265251
    Abstract: A new method of forming a thick oxide MOS transistor for electrostatic discharge protection in a standard sub-micron STI CMOS process for an integrated circuit device has been achieved. A first well and a second well are implanted. The wells are counter-doped to the substrate type. The first well forms the drain, and the second well forms the source. A thin oxide layer is formed. A polysilicon layer is deposited. The polysilicon layer is patterned to form a dummy floating gate. Ions are implanted into the first well to form a first lightly-doped region and into the second well to form a second lightly-doped region of the same type as the wells. The lightly-doped regions are self-aligned to the dummy floating gate. Sidewall spacers are formed on the floating dummy gates. Ions are implanted into the first well to form a first heavily-doped region and the second well to to form a second heavily-doped region of the same type as the wells. The heavily-doped regions are self-aligned to the sidewall spacers.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: July 24, 2001
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Cai Jun, Keng Foo Lo