Patents by Inventor Kenichi Ao

Kenichi Ao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070018642
    Abstract: The magnetic sensor is fabricated such that a magnetic sensor chip, having a one-chip structure in which MRE bridges and a comparator are included, is mounted onto a lead frame using an adhesive material, and then the magnetic sensor chip mounted on the lead frame is encapsulated by molding in a molded material. The magnetic sensor includes a magnetic-field generating portion formed by magnetizing at least one of the chip mounting member, the adhesive material, and the encapsulating material.
    Type: Application
    Filed: September 29, 2006
    Publication date: January 25, 2007
    Applicant: DENSO CORPORATION
    Inventor: Kenichi Ao
  • Publication number: 20060027019
    Abstract: A vibratory angular rate sensor comprises a vibrator having a vibrating element arranged to oscillate along a first direction, the element being arranged to further oscillate along a second direction perpendicular to the first direction when subjected to angular rate about a third direction perpendicular to the first and second directions. The vibrating element is caused to oscillate at a predetermined frequency along the first direction. An oscillation detector generates a voltage representing oscillations of the vibrating element along the second direction. A first synchronous detector synchronously detects a primary frequency component of the generated voltage using clock pulses of the predetermined frequency to produce an output signal. A second synchronous detector synchronously detects an odd-.numbered harmonic of the generated voltage using clock pulses of the odd-numbered harmonic frequency.
    Type: Application
    Filed: July 26, 2005
    Publication date: February 9, 2006
    Inventors: Hajime Ito, Kenichi Ao
  • Publication number: 20050217377
    Abstract: A physical quantity sensor includes: a substrate; an angular speed sensor disposed on the substrate; and an acceleration sensor disposed on the substrate. The angular speed sensor includes an oscillator capable of oscillating by a driving force and displaceable in accordance with a Coriolis force attributed to an angular speed of the oscillator. The acceleration sensor includes a movable portion displaceable in accordance with an acceleration applied to the acceleration sensor. The oscillator has a driving direction, which is not parallel to a displacement direction of the movable portion. The physical quantity sensor having the angular speed sensor and the acceleration sensor detects both of the angular speed and the acceleration with high accuracy.
    Type: Application
    Filed: March 15, 2005
    Publication date: October 6, 2005
    Inventor: Kenichi Ao
  • Publication number: 20050217372
    Abstract: A physical quantity sensor includes: a substrate; three angular speed sensors disposed on the substrate; and three acceleration sensors disposed on the substrate. The three angular speed sensors are capable of detecting three components of an angular speed around three axes, each two of which intersect perpendicularly. The three acceleration sensors are capable of detecting three components of an acceleration in another three axes, each two of which intersect perpendicularly. The three axes of the angular speed sensors intersect at one point, and the other three axes of the acceleration sensors intersect at another one point.
    Type: Application
    Filed: March 17, 2005
    Publication date: October 6, 2005
    Inventor: Kenichi Ao
  • Publication number: 20050156309
    Abstract: A protective sheet is fixed to a jig, and regions of the protective sheet corresponding to regions where dicing-cut is to be performed are removed to form grooves. Then, a semiconductor wafer is bonded to the protective sheet at an opposite side of the jig, and the jig is detached from the protective sheet and the semiconductor wafer bonded together. After that, the semiconductor wafer is cut into semiconductor chips by dicing along the grooves of the protective sheet. Because the protective sheet is not cut by dicing, no scraps of the protective sheet is produced, thereby preventing contamination to the chips.
    Type: Application
    Filed: March 10, 2005
    Publication date: July 21, 2005
    Inventors: Tetsuo Fujii, Tsuyoshi Fukada, Kenichi Ao
  • Patent number: 6906394
    Abstract: A method of manufacturing a semiconductor device is provided. The device is manufactured with use of an SOI (Silicon On Insulator) substrate having a first silicon layer, an oxide layer, and a second silicon layer laminated in this order. After forming a trench reaching the oxide layer from the second silicon layer, dry etching is performed, thus allowing the oxide layer located at the trench bottom to be charged at first. This charging forces etching ions to impinge upon part of the second silicon layer located laterally to the trench bottom. Such part is removed, forming a movable section. For example, ions to neutralize the electric charges are administered into the trench, so that the electric charges are removed from charged movable electrodes and their charged surrounding regions. Removing the electric charges prevents the movable section to stick to its surrounding portions.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: June 14, 2005
    Assignee: Denso Corporation
    Inventors: Hiroshi Muto, Tsuyoshi Fukada, Kenichi Ao, Minekazu Sakai, Yukihiro Takeuchi, Kazuhiko Kano, Junji Oohara
  • Publication number: 20040189294
    Abstract: A magnetic sensor (10) includes a plurality of magneto-resistive elements (R1 to R8) constituting each magneto-resistive element bridge (11, 12) disposed symmetrically. When the resistance values of the magneto-resistive elements (R1 to R8) patterned are varied in accordance with the angle thereof, the deviation of the center value of the offset voltage of the bridge circuit constructed by the plural magneto-resistive elements can be eliminated.
    Type: Application
    Filed: March 25, 2004
    Publication date: September 30, 2004
    Applicant: DENSO CORPORATION
    Inventors: Masato Ishihara, Kenichi Ao
  • Publication number: 20040174164
    Abstract: The magnetic sensor is fabricated such that a magnetic sensor chip, having a one-chip structure in which MRE bridges and a comparator are included, is mounted onto a lead frame using an adhesive material, and then the magnetic sensor chip mounted on the lead frame is encapsulated by molding in a molded material. The magnetic sensor includes a magnetic-field generating portion formed by magnetizing at least one of the chip mounting member, the adhesive material, and the encapsulating material.
    Type: Application
    Filed: March 2, 2004
    Publication date: September 9, 2004
    Applicant: DENSO CORPORATION
    Inventor: Kenichi Ao
  • Patent number: 6787866
    Abstract: A protective sheet is fixed to a jig, and regions of the protective sheet corresponding to regions where dicing-cut is to be performed are removed to form grooves. Then, a semiconductor wafer is bonded to the protective sheet at an opposite side of the jig, and the jig is detached from the protective sheet and the semiconductor wafer bonded together. After that, the semiconductor wafer is cut into semiconductor chips by dicing along the grooves of the protective sheet. Because the protective sheet is not cut by dicing, no scraps of the protective sheet is produced, thereby preventing contamination to the chips.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: September 7, 2004
    Assignee: Denso Corporation
    Inventors: Tetsuo Fujii, Tsuyoshi Fukada, Kenichi Ao
  • Publication number: 20040131887
    Abstract: A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
    Type: Application
    Filed: November 21, 2003
    Publication date: July 8, 2004
    Inventors: Kenichi Ao, Yasutoshi Suzuki, Hideya Yamadera, Norikazu Ohta, Hirofumi Funahashi
  • Patent number: 6753201
    Abstract: A method of manufacturing a semiconductor device is provided. The device is manufactured with use of an SOI (Silicon On Insulator) substrate having a first silicon layer, an oxide layer, and a second silicon layer laminated in this order. After forming a trench reaching the oxide layer from the second silicon layer, dry etching is performed, thus allowing the oxide layer located at the trench bottom to be charged at first. This charging forces etching ions to impinge upon part of the second silicon layer located laterally to the trench bottom. Such part is removed, forming a movable section. For example, ions to neutralize the electric charges are administered into the trench, so that the electric charges are removed from charged movable electrodes and their charged surrounding regions. Removing the electric charges prevents the movable section to stick to its surrounding portions.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: June 22, 2004
    Assignee: Denso Corporation
    Inventors: Hiroshi Muto, Tsuyoshi Fukada, Kenichi Ao, Minekazu Sakai, Yukihiro Takeuchi, Kazuhiko Kano, Junji Oohara
  • Patent number: 6658937
    Abstract: An oscillatory angular rate sensor unit includes a mount base and a sensor element installed on the mount base. The sensor element includes an oscillator which produces angular velocity-caused oscillations in a first direction when the sensor element experiences angular motion during self-excited oscillation of the oscillator in a second direction opposite the first direction. A resonant frequency of the sensor unit in the first direction is set to a value less than or equal to a reciprocal of square root of two times a difference between resonant frequencies of the oscillator in the first and second directions, thereby eliminating an error output caused by undesirable acceleration acting on the sensor unit.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: December 9, 2003
    Assignee: Denso Corporation
    Inventors: Kenichi Ao, Hirofumi Higuchi
  • Publication number: 20030201506
    Abstract: A method of manufacturing a semiconductor device is provided. The device is manufactured with use of an SOI (Silicon On Insulator) substrate having a first silicon layer, an oxide layer, and a second silicon layer laminated in this order. After forming a trench reaching the oxide layer from the second silicon layer, dry etching is performed, thus allowing the oxide layer located at the trench bottom to be charged at first. This charging forces etching ions to impinge upon part of the second silicon layer located laterally to the trench bottom. Such part is removed, forming a movable section. For example, ions to neutralize the electric charges are administered into the trench, so that the electric charges are removed from charged movable electrodes and their charged surrounding regions. Removing the electric charges prevents the movable section to stick to its surrounding portions.
    Type: Application
    Filed: May 30, 2003
    Publication date: October 30, 2003
    Inventors: Hiroshi Muto, Tsuyoshi Fukada, Kenichi Ao, Minekazu Sakai, Yukihiro Takeuchi, Kazuhiko Kano, Junji Oohara
  • Publication number: 20030010121
    Abstract: An oscillatory angular rate sensor unit includes a mount base and a sensor element installed on the mount base. The sensor element includes an oscillator which produces angular velocity-caused oscillations in a first direction when the sensor element experiences angular motion during self-excited oscillation of the oscillator in a second direction opposite the first direction. A resonant frequency of the sensor unit in the first direction is set to a value less than or equal to a reciprocal of square root of two times a difference between resonant frequencies of the oscillator in the first and second directions, thereby eliminating an error output caused by undesirable acceleration acting on the sensor unit.
    Type: Application
    Filed: July 11, 2002
    Publication date: January 16, 2003
    Inventors: Kenichi Ao, Hirofumi Higuchi
  • Publication number: 20020177252
    Abstract: A method of manufacturing a semiconductor device is provided. The device is manufactured with use of an SOI (Silicon On Insulator) substrate having a first silicon layer, an oxide layer, and a second silicon layer laminated in this order. After forming a trench reaching the oxide layer from the second silicon layer, dry etching is performed, thus allowing the oxide layer located at the trench bottom to be charged at first. This charging forces etching ions to impinge upon part of the second silicon layer located laterally to the trench bottom. Such part is removed, forming a movable section. For example, ions to neutralize the electric charges are administered into the trench, so that the electric charges are removed from charged movable electrodes and their charged surrounding regions. Removing the electric charges prevents the movable section to stick to its surrounding portions.
    Type: Application
    Filed: May 28, 2002
    Publication date: November 28, 2002
    Inventors: Hiroshi Muto, Tsuyoshi Fukada, Kenichi Ao, Minekazu Sakai, Yukihiro Takeuchi, Kazuhiko Kano, Junji Oohara
  • Patent number: 6448624
    Abstract: A semiconductor sensor chip is provided with a weight portion supported in a frame via beams whereby acceleration up to substantially ±1 G can be detected by utilizing piezoresistance effect of resistor elements formed on the beams. The semiconductor sensor chip is supported by a seat having a thermal expansion coefficient equivalent to that of the semiconductor sensor chip via the frame. The frame and the seat are adhered to each other by a flexible adhesive agent mixed with a plurality of resin beads functioning as spacers and under an adhesion state, air damping of the weight portion is carried out by setting a dimension of an air gap between the weight portion and the seat to a range of 7 through 15 &mgr;m.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: September 10, 2002
    Assignee: Denso Corporation
    Inventors: Seiichiro Ishio, Kenichi Ao, Minoru Murata, Yasuki Shimoyama, Tomohito Kunda, Norio Kitao
  • Patent number: 6429506
    Abstract: A protective sheet is fixed to a jig, and regions of the protective sheet corresponding to regions where dicing-cut is to be performed are removed to form grooves. Then, a semiconductor wafer is bonded to the protective sheet at an opposite side of the jig, and the jig is detached from the protective sheet and the semiconductor wafer bonded together. After that, the semiconductor wafer is cut into semiconductor chips by dicing along the grooves of the protective sheet. Because the protective sheet is not cut by dicing, no scraps of the protective sheet is produced, thereby preventing contamination to the chips.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: August 6, 2002
    Assignee: Denso Corporation
    Inventors: Tetsuo Fujii, Tsuyoshi Fukada, Hiroshi Muto, Kenichi Ao, Shinji Yoshihara, Sumitomo Inomata
  • Publication number: 20020093076
    Abstract: A protective sheet is fixed to a jig, and regions of the protective sheet corresponding to regions where dicing-cut is to be performed are removed to form grooves. Then, a semiconductor wafer is bonded to the protective sheet at an opposite side of the jig, and the jig is detached from the protective sheet and the semiconductor wafer bonded together. After that, the semiconductor wafer is cut into semiconductor chips by dicing along the grooves of the protective sheet. Because the protective sheet is not cut by dicing, no scraps of the protective sheet is produced, thereby preventing contamination to the chips.
    Type: Application
    Filed: March 7, 2002
    Publication date: July 18, 2002
    Inventors: Tetsuo Fujii, Tsuyoshi Fukada, Hiroshi Muto, Kenichi Ao, Shinji Yoshihara, Sumitomo Inomata
  • Patent number: 6270685
    Abstract: In a method for producing a semiconductor dynamic sensor, an anisotropic etching mask is formed on a (100) crystal orientation silicon substrate with a main portion and form-compensation portions formed at the corners of the main portion. Each of the form-compensation portions has a rectangular shape with a long side and a short side. Further, one of the long and short sides of the etching mask stretches in the <011> direction of the silicon substrate, and the other side stretches in the <0{overscore (1)}1> direction of the silicon substrate. As a result, the silicon substrate can be etched into a predetermined shape without making large corner-undercut portions on a nonetched portion corresponding to the main portion of the mask.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: August 7, 2001
    Assignee: Denso Corporation
    Inventors: Seiichiro Ishio, Kenichi Ao
  • Patent number: 6151966
    Abstract: A semiconductor accelerometer device is formed on an SOI substrate by micro-machining. A movable unit is supported at both ends, and a weight portion is movable in response to acceleration exerted in the detection direction. A movable electrode is formed in a comb shape integrally with the weight portion. A pair of fixed electrodes in a comb shape are cantilevered and interleaved with the movable electrode to face the movable electrode. A plurality of through holes is provided in the electrodes so that the electrodes have Rahmen structure which is a series of rectangular frames. This structure reduces the weight of each electrode while increasing the strength against twist force. The electrodes are less likely from breaking in response to an acceleration exerted in a direction perpendicular to the normal detection direction because of reduced weight.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: November 28, 2000
    Assignee: Denso Corporation
    Inventors: Minekazu Sakai, Yukihiro Takeuchi, Kazuhiko Kano, Seiji Fujino, Tsuyoshi Fukada, Hiroshige Sugito, Minoru Murata, Hiroshi Muto, Hirofumi Higuchi, Kenichi Ao