Patents by Inventor Kenichi Kuroda

Kenichi Kuroda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120126360
    Abstract: There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA.
    Type: Application
    Filed: January 31, 2012
    Publication date: May 24, 2012
    Inventors: Kenichi KURODA, Kozo Watanabe, Hirohiko Yamamoto
  • Patent number: 8119495
    Abstract: There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: February 21, 2012
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Kenichi Kuroda, Kozo Watanabe, Hirohiko Yamamoto
  • Publication number: 20120028453
    Abstract: An object is to provide a method for manufacturing a silicon carbide semiconductor device in which a time required for removing a sacrificial oxide film can be shortened and damage to a surface of the silicon carbide layer can be reduced. The method for manufacturing a silicon carbide semiconductor device includes: (a) performing ion implantation to a silicon carbide layer; (b) performing activation annealing to the ion-implanted silicon carbide layer 2; (c) removing a surface layer of the silicon carbide layer 2, to which the activation annealing has been performed, by dry etching; (d) forming a sacrificial oxide film on a surface layer of the silicon carbide layer, to which the dry etching has been performed, by performing sacrificial oxidation thereto; and (e) removing the sacrificial oxide film by wet etching.
    Type: Application
    Filed: September 1, 2009
    Publication date: February 2, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshinori Matsuno, Kenichi Ohtsuka, Naoki Yutani, Kenichi Kuroda, Hiroshi Watanabe, Shozo Shikama
  • Publication number: 20120014723
    Abstract: The semiconductive roller according to the present invention includes a roller body having an outer peripheral surface made of a crosslinked substance of a semiconductive rubber composition and exhibiting Shore A hardness of not more than 60, the semiconductive rubber composition contains a base polymer made of a mixture of (1) mixed rubber N of liquid nitrile rubber and solid nitrile rubber, (2) chloroprene rubber C, and (3) epichlorohydrin rubber E in a mass ratio (C+E)/N of 10/90 to 80/20, the ratios of the chloroprene rubber and the epichlorohydrin rubber in the total quantity of the base polymer are not less than 5 mass % and not less than 5 mass % respectively, and roller resistance at an applied voltage of 5 V is not less than 104? and not more than 109?.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 19, 2012
    Inventors: Yoshihisa MIZUMOTO, Akihiko KAWATANI, Takashi MARUI, Kenichi KURODA
  • Publication number: 20110207288
    Abstract: There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 25, 2011
    Inventors: Kenichi KURODA, Kozo Watanabe, Hirohiko Yamamoto
  • Patent number: 7965563
    Abstract: A semiconductor device having an electrically erasable and programmable nonvolatile memory, for example, a rewritable nonvolatile memory including memory cells arranged in rows and columns and disposed to facilitate both flash erasure as well as selective erasure of individual units of plural memory cells. The semiconductor device which functions as a microcomputer chip also has a processing unit and includes an input terminal for receiving an operation mode signal for switching the microcomputer between a first operation mode in which the flash memory is rewritten under control of a processing unit and a second operation mode in which the flash memory is rewritten under control of separate writing circuit externally connectable to the microcomputer.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: June 21, 2011
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Kiyoshi Matsubara, Naoki Yashiki, Shiro Baba, Takashi Ito, Hirofumi Mukai, Masanao Sato, Masaaki Terasawa, Kenichi Kuroda, Kazuyoshi Shiba
  • Patent number: 7948086
    Abstract: There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: May 24, 2011
    Assignees: Renesas Electronics Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Kenichi Kuroda, Kozo Watanabe, Hirohiko Yamamoto
  • Publication number: 20110001209
    Abstract: In a termination structure in which a JTE layer is provided, a level or defect existing at an interface between a semiconductor layer and an insulating film, or a minute amount of adventitious impurities that infiltrate into the semiconductor interface from the insulating film or from an outside through the insulating film becomes a source or a breakdown point of a leakage current, which deteriorates a breakdown voltage.
    Type: Application
    Filed: March 12, 2009
    Publication date: January 6, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hiroshi Watanabe, Naoki Yutani, Kenichi Ohtsuka, Kenichi Kuroda, Masayuki Imaizumi, Yoshinori Matsuno
  • Patent number: 7847296
    Abstract: On a major surface of an n-type silicon carbide inclined substrate (2) is formed an n-type voltage-blocking layer (3) made of silicon carbide by means of epitaxial growth. On the n-type voltage-blocking layer (3) is formed a p-type silicon carbide region (4) rectangular when viewed from above. On the surface of the p-type silicon carbide region (4) is formed a p-type contact electrode (5). In the p-type silicon carbide region (4), the periphery of the p-type silicon carbide region (4) that is parallel with a (11-20) plane (14a) of the silicon carbide crystal, which is liable to cause avalanche breakdown, is located on the short side. In this manner, the dielectric strength of a silicon carbide semiconductor device can be improved.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: December 7, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroshi Sugimoto, Yoshinori Matsuno, Kenichi Ohtsuka, Noboru Mikami, Kenichi Kuroda
  • Publication number: 20100155857
    Abstract: There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA.
    Type: Application
    Filed: March 1, 2010
    Publication date: June 24, 2010
    Inventors: Kenichi KURODA, Kozo Watanabe, Hirohiko Yamamoto
  • Patent number: 7687914
    Abstract: There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: March 30, 2010
    Assignees: Renesas Technology Corporation, Hitachi ULSI Systems Co., Ltd.
    Inventors: Kenichi Kuroda, Kozo Watanabe, Hirohiko Yamamoto
  • Patent number: 7589423
    Abstract: There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: September 15, 2009
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Kenichi Kuroda, Kozo Watanabe, Hirohiko Yamamoto
  • Patent number: 7564072
    Abstract: A semiconductor device includes an anode electrode in Schottky contact with an n-type drift layer formed in an SiC substrate and a JTE region formed outside the anode electrode. The JTE region is made up of a first p-type zone formed in an upper portion of the drift layer under an edge of the anode electrode and a second p-type zone formed outside the first p-type zone having a lower surface impurity concentration than the first p-type zone. The second p-type zone is provided 15 ?m or more outwardly away from the edge of the anode electrode. The surface impurity concentration of the first p-type zone ranges from 1.8×1013 to 4×1013 cm?2, and that of the second p-type zone ranges from 1×1013 to 2.5×1013 cm?2.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: July 21, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenichi Ohtsuka, Yoichiro Tarui, Yoshinori Matsuno, Kenichi Kuroda, Hiroshi Sugimoto
  • Publication number: 20090157953
    Abstract: A semiconductor device having an electrically erasable and programmable nonvolatile memory, for example, a rewritable nonvolatile memory including memory cells arranged in rows and columns and disposed to facilitate both flash erasure as well as selective erasure of individual units of plural memory cells. The semiconductor device which functions as a microcomputer chip also has a processing unit and includes an input terminal for receiving an operation mode signal for switching the microcomputer between a first operation mode in which the flash memory is rewritten under control of a processing unit and a second operation mode in which the flash memory is rewritten under control of separate writing circuit externally connectable to the microcomputer.
    Type: Application
    Filed: February 2, 2009
    Publication date: June 18, 2009
    Inventors: Kiyoshi Matsubara, Naoki Yashiki, Shiro Baba, Takashi Ito, Hirofumi Mukai, Masanao Sato, Masaaki Terasawa, Kenichi Kuroda, Kazuyoshi Shiba
  • Publication number: 20090134404
    Abstract: On a major surface of an n-type silicon carbide inclined substrate (2) is formed an n-type voltage-blocking layer (3) made of silicon carbide by means of epitaxial growth. On the n-type voltage-blocking layer (3) is formed a p-type silicon carbide region (4) rectangular when viewed from above. On the surface of the p-type silicon carbide region (4) is formed a p-type contact electrode (5). In the p-type silicon carbide region (4), the periphery of the p-type silicon carbide region (4) that is parallel with a (11-20) plane (14a) of the silicon carbide crystal, which is liable to cause avalanche breakdown, is located on the short side. In this manner, the dielectric strength of a silicon carbide semiconductor device can be improved.
    Type: Application
    Filed: April 24, 2006
    Publication date: May 28, 2009
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Hiroshi Sugimoto, Yoshinori Matsuno, Kenichi Ohtsuka, Noboru Mikami, Kenichi Kuroda
  • Publication number: 20090098719
    Abstract: An object of the invention is to provide a method for manufacturing a silicon carbide semiconductor device having constant characteristics with reduced variations in forward characteristics. The method for manufacturing the silicon carbide semiconductor device according to the invention includes the steps of: (a) preparing a silicon carbide substrate; (b) forming an epitaxial layer on a first main surface of the silicon carbide substrate; (c) forming a protective film on the epitaxial layer; (d) forming a first metal layer on a second main surface of the silicon carbide substrate; (e) applying heat treatment to the silicon carbide substrate at a predetermined temperature to form an ohmic junction between the first metal layer and the second main surface of the silicon carbide substrate; (f) removing the protective film; (g) forming a second metal layer on the epitaxial layer; and (h) applying heat treatment to the silicon carbide substrate at a temperature from 400° C. to 600° C.
    Type: Application
    Filed: August 8, 2008
    Publication date: April 16, 2009
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshinori MATSUNO, Kenichi Ohtsuka, Kenichi Kuroda, Shozo Shikama, Naoki Yutani
  • Patent number: 7505329
    Abstract: A semiconductor device having an electrically erasable and programmable nonvolatile memory, for example, a rewritable nonvolatile memory including memory cells arranged in rows and columns and disposed to facilitate both flash erasure as well as selective erasure of individual units of plural memory cells. The semiconductor device which functions as a microcomputer chip also has a processing unit and includes an input terminal for receiving an operation mode signal for switching the microcomputer between a first operation mode in which the flash memory is rewritten under control of a processing unit and a second operation mode in which the flash memory is rewritten under control of separate writing circuit externally connectable to the microcomputer.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 17, 2009
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems, Co., Ltd.
    Inventors: Kiyoshi Matsubara, Naoki Yashiki, Shiro Baba, Takashi Ito, Hirofumi Mukai, Masanao Sato, Masaaki Terasawa, Kenichi Kuroda, Kazuyoshi Shiba
  • Publication number: 20080211056
    Abstract: There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA.
    Type: Application
    Filed: October 30, 2007
    Publication date: September 4, 2008
    Inventors: Kenichi Kuroda, Kozo Watanabe, Hirohlko Yamamoto
  • Patent number: 7411302
    Abstract: There is provided a technique for improving the flatness at the surface of members embedded in a plurality of recesses without resulting in an increase in the time required for the manufacturing processes. According to this technique, the dummy patterns can be placed up to the area near the boundary BL between the element forming region DA and dummy region FA by placing the first dummy pattern DP1 of relatively wider area and the second dummy pattern DP2 of relatively small area in the dummy region FA. Thereby, the flatness of the surface of the silicon oxide film embedded within the isolation groove can be improved over the entire part of the dummy region FA. Moreover, an increase of the mask data can be controlled when the first dummy patterns DP1 occupy a relatively wide region among the dummy region FA.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: August 12, 2008
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Kenichi Kuroda, Kozo Watanabe, Hirohiko Yamamoto
  • Publication number: 20080139701
    Abstract: There is provided a powdered polycarboxylic acid-based cement dispersant containing a polyamide-polyamine in a skeleton of a polymer thereof and a dispersant composition containing the dispersant, the dispersant having improved water reducing ability, slump-flow retention, and strength-developing properties of concrete, enabling effective prevention of blocking, being highly soluble in a slurry, and being homogeneously mixed with an inorganic powder. The powdered polycarboxylic acid-based cement dispersant comprises a powdered cement dispersant obtained by dry-powdering a solution or dispersion of a copolymer containing a polyamide-polyamine in a skeleton of a polymer thereof, wherein the powder has a sphere form, an average particle diameter of 30 to 300 ?m, and a particle size distribution in which the mass of particles having a particle diameter of 50 to 350 ?m accounts for 70% or more of the total mass of the powder.
    Type: Application
    Filed: December 2, 2005
    Publication date: June 12, 2008
    Applicants: SIKA LTD, TOHKO CHEMICAL INDUSTRY CO. LTD.
    Inventors: Wernher M Danzinger, Kaname Saitoh, Tetsu Tomoyose, Atsushi Kobayashi, Akira Ikeda, Kenichi Kuroda