Patents by Inventor Kenichiro Gunji

Kenichiro Gunji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10093166
    Abstract: A hybrid vehicle has a first motor/generator mechanically coupled to a drive wheel, a second motor/generator mechanically coupled to an internal combustion engine and a high-power battery that is electrically coupled to the motor/generators. The second motor/generator has a smaller electrical power generation capability than the first motor/generator. While starting the vehicle at a time of insufficient battery capacity required for the EV start, the power generation controller disconnects the first electric motor from the drive wheel, connects the first electric motor to the internal combustion engine, and carries out MG1 idle power generation in which the first electric motor generates power by receiving torque from the internal combustion engine. When the vehicle is stopped at a time of sufficient battery capacity, the power generation controller does not carry out the MG1 idle power generation and keeps the first electric motor mechanically coupled to the drive wheel.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: October 9, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Ryohey Toyota, Kenichiro Gunji, Tomohiro Miyagawa, Masato Koga, Hiroyuki Fukuda, Hidekazu Yagi, Shinobu Kamada
  • Publication number: 20180141428
    Abstract: A hybrid vehicle has a first motor/generator mechanically coupled to a drive wheel, a second motor/generator mechanically coupled to an internal combustion engine and a high-power battery that is electrically coupled to the motor/generators. The second motor/generator has a smaller electrical power generation capability than the first motor/generator. While starting the vehicle at a time of insufficient battery capacity required for the EV start, the power generation controller disconnects the first electric motor from the drive wheel, connects the first electric motor to the internal combustion engine, and carries out MG1 idle power generation in which the first electric motor generates power by receiving torque from the internal combustion engine. When the vehicle is stopped at a time of sufficient battery capacity, the power generation controller does not carry out the MG1 idle power generation and keeps the first electric motor mechanically coupled to the drive wheel.
    Type: Application
    Filed: June 8, 2015
    Publication date: May 24, 2018
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Ryohey TOYOTA, Kenichiro GUNJI, Tomohiro MIYAGAWA, Masato KOGA, Hiroyuki FUKUDA, Hidekazu YAGI, Shinobu KAMADA
  • Patent number: 9216731
    Abstract: Provided is a control system for a hybrid vehicle capable of achieving engine startup while minimizing shock. In the control system for a hybrid vehicle, in response to an engine startup request, upon engagement of a clutch between a motor generator and a drive wheel and startup of the engine by the motor generator, engine startup is allowed when the engine startup request is present and the absolute value of the motor/generator output torque assumes a predetermined value or less.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: December 22, 2015
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Kaori Tanishima, Hiroaki Kawamura, Kenichiro Gunji
  • Publication number: 20140136039
    Abstract: Provided is a control system for a hybrid vehicle capable of achieving engine startup while minimizing shock. In the control system for a hybrid vehicle, in response to an engine startup request, upon engagement of a clutch between a motor generator and a drive wheel and startup of the engine by the motor generator, engine startup is allowed when the engine startup request is present and the absolute value of the motor/generator output torque assumes a predetermined value or less. The changes are shown below: Provided is a control system for a hybrid vehicle capable of achieving engine startup while minimizing shock. In the control system for a hybrid vehicle, in response to an engine startup request, upon engagement of a clutch between a motor generator and a drive wheel and startup of the engine by the motor generator, engine startup is allowed when the engine startup request is present and the absolute value of the motor/generator output torque assumes a predetermined value or less.
    Type: Application
    Filed: June 19, 2012
    Publication date: May 15, 2014
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Kaori Tanishima, Hiroaki Kawamura, Kenichiro Gunji
  • Patent number: 6930405
    Abstract: A vehicle control apparatus performs regenerative braking by regeneratively operating first and second motor-generators to apply first and second braking torques in response to a deceleration request. The vehicle control apparatus is improves the efficiency in regeneratively generating electric power without greatly disturbing the balance between the. The control apparatus calculates an ideal front-rear wheel distribution ratio for front wheel braking torque and the rear wheel braking torque, and also calculates a distribution allowance for the ideal front-rear wheel distribution ratio. The control apparatus then corrects the ideal front-rear wheel distribution ratio within the distribution allowance such that the electric power generation efficiencies of the first motor-generator connected to the rear wheels and the second motor-generator connected to the front wheels are increased.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: August 16, 2005
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Kenichiro Gunji
  • Publication number: 20040070270
    Abstract: A vehicle control apparatus performs regenerative braking by regeneratively operating first and second motor-generators to apply first and second braking torques in response to a deceleration request. The vehicle control apparatus is improves the efficiency in regeneratively generating electric power without greatly disturbing the balance between the. The control apparatus calculates an ideal front-rear wheel distribution ratio for front wheel braking torque and the rear wheel braking torque, and also calculates a distribution allowance for the ideal front-rear wheel distribution ratio. The control apparatus then corrects the ideal front-rear wheel distribution ratio within the distribution allowance such that the electric power generation efficiencies of the first motor-generator connected to the rear wheels and the second motor-generator connected to the front wheels are increased.
    Type: Application
    Filed: September 30, 2003
    Publication date: April 15, 2004
    Applicant: Nissan Motor Co., Ltd.
    Inventor: Kenichiro Gunji