Patents by Inventor Kenneth A. Morgan

Kenneth A. Morgan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200002841
    Abstract: Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density?100 cm?2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
    Type: Application
    Filed: July 9, 2019
    Publication date: January 2, 2020
    Inventors: Robert T. Bondokov, Leo J. Schowalter, Kenneth Morgan, Glen A. Slack, Shailaja P. Rao, Shawn Robert Gibb
  • Patent number: 10522708
    Abstract: A method for allowing a reflective layer to abut against an edge of a metal contact while preventing contamination of a metal contact for an LED die is provided. The method includes encapsulating an electrical contact (i.e. metal contact) via with a barrier layer prior to deposition of a reflective film layer. The barrier layer encapsulates the metal contact by defining a mask pattern with a larger size than the metal contact via, which prevents the metal contact from becoming contaminated by the reflective film. This encapsulation reduces contamination of the metal contact and also reduces the voltage drop during operation of the LED die.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: December 31, 2019
    Assignee: LUMILEDS LLC
    Inventors: Yue Chau Kwan, Li Ma, Liang Zhang, Kenneth Morgan Davis, Bing Xuan Li
  • Publication number: 20190326484
    Abstract: A semiconductor light emitting device includes a light emitting diode (LED) chip, a recipient luminophoric medium on the LED chip, a patterned superstrate on the recipient luminophoric medium opposite the LED chip, the patterned superstrate comprising a patterned superstrate on the recipient luminophoric medium opposite the LED chip, the patterned superstrate comprising a patterned surface that is configured to reduce a variation in a color point of a light emitted by the semiconductor light emitting device as a function of an angle off an optical axis of the LED chip.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 24, 2019
    Inventors: Erin Welch, Paul Thomas Fini, Eric Tarsa, Kenneth Morgan Davis
  • Patent number: 10392722
    Abstract: Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density ?100 cm?2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: August 27, 2019
    Assignee: CRYSTAL IS, INC.
    Inventors: Robert T. Bondokov, Leo J. Schowalter, Kenneth Morgan, Glen A. Slack, Shailaja P. Rao, Shawn Robert Gibb
  • Publication number: 20190189833
    Abstract: A method for allowing a reflective layer to abut against an edge of a metal contact while preventing contamination of a metal contact for an LED die is provided. The method includes encapsulating an electrical contact (i.e. metal contact) via with a barrier layer prior to deposition of a reflective film layer. The barrier layer encapsulates the metal contact by defining a mask pattern with a larger size than the metal contact via, which prevents the metal contact from becoming contaminated by the reflective film. This encapsulation reduces contamination of the metal contact and also reduces the voltage drop during operation of the LED die.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 20, 2019
    Applicant: Lumileds LLC
    Inventors: Yue Chau KWAN, Li MA, Liang ZHANG, Kenneth Morgan DAVIS, Bing Xuan LI
  • Publication number: 20180261339
    Abstract: Control rod drives include all-digital monitoring, powering, and controlling systems for operating the drives. Each controlling system includes distinct microprocessor-driven channels that independently monitor and handle control rod drive position information reported from multiple position sensors per drive. Controlling systems function as rod control and information systems with top-level hardware interfaced with nuclear plant operators other plant systems. The top-level hardware can receive operator instructions and report control rod position, as well as report errors detected using redundant data from the multiple sensors. Positional data received from each drive is multiplexed across plural, redundant channels to allow verification of the system using independent position data as well as operation of the system should a single channel or detector fail.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 13, 2018
    Inventors: Jerry W. Nicholson, Cesar M. Velasquez, Kenneth A. Morgan
  • Publication number: 20180019028
    Abstract: Control rod drives include linearly-moveable control elements inside an isolation barrier. Control rod drives move the control element through a motor and rotor powering a linear screw internal to an isolation barrier. Induction coils may generate magnetic fields and be moveable across a full stroke length of the control element in the reactor. The magnetic fields hold closed a releasable latch to disconnect the control elements from the linear drives. A control rod assembly may join to the control element. The control rod assembly may lock with magnetic overtravel latches inside the isolation barrier to maintain an overtravel position. Overtravel release coils outside the isolation barrier may release the latches to leave the overtravel position. Operation includes moving the magnetic fields and releasable latch together on opposite sides of an isolation barrier to drive the control element to desired insertion points, including full insertion by gravity following de-energization.
    Type: Application
    Filed: July 11, 2017
    Publication date: January 18, 2018
    Inventors: Kenneth A. Morgan, David L. Major, Randy M. Brown, Gerald A. Deaver
  • Publication number: 20180019026
    Abstract: Control rod drives include linearly-moveable control elements inside an isolation barrier. Control rod drives move the control element through secured magnetic elements subject to magnetic fields. Induction coils may generate the magnetic fields across a full stroke length of the control element in the reactor. A closed coolant loop may cool the induction coils, which may be in a vacuum outside the isolation barrier. A control rod assembly may house the magnetic elements and directly, removably join to the control element. The control rod assembly may lock with magnetic overtravel latches inside the isolation barrier to maintain an overtravel position. Overtravel release coils outside the isolation barrier may release the latches to leave the overtravel position. Methods of operation include selectively energizing or de-energizing induction coils to drive the control element to desired insertion points, including full insertion by gravity following de-energization.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 18, 2018
    Inventors: Kenneth A. Morgan, David L. Major, Randy M. Brown
  • Publication number: 20180019027
    Abstract: Control rod drives include linearly-moveable control elements inside an isolation barrier. Control rod drives move the control element through secured magnetic elements subject to magnetic fields. Induction coils may generate magnetic fields and be moveable across a full stroke length of the control element in the reactor. A motor may spin a linear screw to move the induction coils on a vertical travel nut. A control rod assembly may house the magnetic elements and directly, removably join to the control element. The control rod assembly may lock with magnetic overtravel latches inside the isolation barrier to maintain an overtravel position. Overtravel release coils outside the isolation barrier may release the latches to leave the overtravel position. Operation includes moving the induction coils with a linear screw to drive the control element to desired insertion points, including full insertion by gravity following de-energization. No direct connection may penetrate the isolation barrier.
    Type: Application
    Filed: July 10, 2017
    Publication date: January 18, 2018
    Inventors: Kenneth A. Morgan, David L. Major, Randy M. Brown, Gerald A. Deaver
  • Publication number: 20170350036
    Abstract: Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density?100 cm?2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
    Type: Application
    Filed: August 24, 2017
    Publication date: December 7, 2017
    Inventors: Robert T. Bondokov, Leo J. Schowalter, Kenneth Morgan, Glen A. Slack, Shailaja P. Rao, Shawn Robert Gibb
  • Patent number: 9771666
    Abstract: Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density?100 cm?2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: September 26, 2017
    Assignee: CRYSTAL IS, INC.
    Inventors: Robert T. Bondokov, Leo J. Schowalter, Kenneth Morgan, Glen A. Slack, Shailaja P. Rao, Shawn Robert Gibb
  • Publication number: 20150275393
    Abstract: Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density?100 cm?2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.
    Type: Application
    Filed: April 13, 2015
    Publication date: October 1, 2015
    Inventors: Robert T. Bondokov, Leo J. Schowalter, Kenneth Morgan, Glen A. Slack, Shailaja P. Rao, Shawn Robert Gibb
  • Patent number: 8505018
    Abstract: A system and methods for server consolidation are disclosed. Embodiments of the invention allow consolidation of less used technology infrastructure resulting in lower total server count. A target server list and a base server list are determined by examining CPU utilization and also by applying rating factors. The target server list includes target servers to be eliminated by transferring tasks to base servers in the base server list. Consolidation scenarios can then be identified to produce a consolidated server utilization analysis to facilitate the consolidating of interconnected servers. In at least some embodiments, the rating factors can include a minimum utilization threshold, for example, a threshold of ten percent utilization. Other factors can include server environment, server role, operating system, server location, and model technology, for example, whether the specific server hardware technology is declining or outdated.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: August 6, 2013
    Assignee: Bank of America Corporation
    Inventors: David Kenneth Morgan, Anthony Francis Hutchings, Christopher Michael Rice, Michael Wiener
  • Patent number: 8349077
    Abstract: Reducing the microvoid (MV) density in AlN ameliorates numerous problems related to cracking during crystal growth, etch pit generation during the polishing, reduction of the optical transparency in an AlN wafer, and, possibly, growth pit formation during epitaxial growth of AlN and/or AlGaN. This facilitates practical crystal production strategies and the formation of large, bulk AlN crystals with low defect densities—e.g., a dislocation density below 104 cm?2 and an inclusion density below 104 cm?3 and/or a MV density below 104 cm?3.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: January 8, 2013
    Assignee: Crystal IS, Inc.
    Inventors: Robert T. Bondokov, Kenneth Morgan, Glen A. Slack, Leo J. Schowalter
  • Patent number: 7323414
    Abstract: According to one aspect of the invention, an improved process for preparing a surface of substrate is provided wherein the surface of the substrate is prepared for a chemical mechanical polishing (CMP) process, the CMP process is performed on the surface of the substrate, and the surface of the substrate is finished to clear the substrate surface of any active ingredients from the CMP process. Also, an improved substrate produced by the method is provided. According to one aspect of the invention, particular polishing materials and procedures may be used that allow for increased quality of AlN substrate surfaces.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: January 29, 2008
    Assignees: Crystal IS, Inc., Rensselaer Polytechnic Institute
    Inventors: Leo J. Schowalter, Javier Martinez Lopez, Juan Carlos Rojo, Kenneth Morgan
  • Publication number: 20070289946
    Abstract: According to one aspect of the invention, an improved process for preparing a surface of substrate is provided wherein the surface of the substrate is prepared for a chemical mechanical polishing (CMP) process, the CMP process is performed on the surface of the substrate, and the surface of the substrate is finished to clear the substrate surface of any active ingredients from the CMP process. Also, an improved substrate produced by the method is provided. According to one aspect of the invention, particular polishing materials and procedures may be used that allow for increased quality of AlN substrate surfaces.
    Type: Application
    Filed: February 28, 2006
    Publication date: December 20, 2007
    Applicants: Rensselaer Polytechnic Institute, Crystal IS Inc.
    Inventors: Leo Schowalter, Javier Lopez, Juan Rojo, Kenneth Morgan
  • Publication number: 20070243653
    Abstract: Fabrication of doped and undoped stoichiometric polycrystalline AlN ceramics with high purity is accomplished by, for example, reacting Al pellets with nitrogen gas. Such polycrystalline AlN ceramics may be utilized in the fabrication of high purity AlN single crystals, which may be annealed to enhance a conductivity thereof.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 18, 2007
    Applicant: Crystal IS, Inc.
    Inventors: Kenneth Morgan, Leo Schowalter, Glen Slack
  • Publication number: 20070134827
    Abstract: Reducing the microvoid (MV) density in AlN ameliorates numerous problems related to cracking during crystal growth, etch pit generation during the polishing, reduction of the optical transparency in an AlN wafer, and, possibly, growth pit formation during epitaxial growth of AlN and/or AlGaN. This facilitates practical crystal production strategies and the formation of large, bulk AlN crystals with low defect densities—e.g., a dislocation density below 104 cm?2 and an inclusion density below 104 cm?3 and/or a MV density below 104 cm?3.
    Type: Application
    Filed: November 28, 2006
    Publication date: June 14, 2007
    Inventors: Robert Bondokov, Kenneth Morgan, Glen Slack, Leo Schowalter
  • Publication number: 20070101932
    Abstract: Bulk single crystals of AlN having a diameter greater than about 25 mm and dislocation densities of about 10,000 cm?2 or less and high-quality AlN substrates having surfaces of any desired crystallographic orientation fabricated from these bulk crystals.
    Type: Application
    Filed: May 9, 2006
    Publication date: May 10, 2007
    Applicant: Crystal IS, Inc.
    Inventors: Leo Schowalter, Glen Slack, J. Rojo, Robert Bondokov, Kenneth Morgan, Joseph Smart
  • Publication number: 20070073481
    Abstract: A method for determining the relative position of two points using an inertial navigation system is described. The method comprises estimating position error states and a position solution with an INS at a first position, estimating position error states and a position solution with the INS at a second position, and returning the INS to the first position. Estimates of the first and second position error states are adjusted based on correlations developed during a transition returning the INS from the second position to the first position.
    Type: Application
    Filed: September 28, 2005
    Publication date: March 29, 2007
    Inventors: Kenneth Morgan, Jeffrey VanGuilder, John White