Patents by Inventor Kenneth Floyd Castner
Kenneth Floyd Castner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6713565Abstract: It has been unexpectedly discovered that cis-1,4-polybutadiene that is synthesized utilizing Zeigler-Natta catalyst systems has superior characteristics for utilization in solid golf ball cores if the polymerization is terminated utilizing a carboxylic acid of the structural formula RCOOH, wherein R represents an alkyl group containing from 1 to about 30 carbon atoms.Type: GrantFiled: June 17, 2002Date of Patent: March 30, 2004Assignee: The Goodyear Tire & Rubber CompanyInventors: Craig William Burkhart, Michael Lester Kerns, Kenneth Floyd Castner, Michael Joseph Rachita, Michael Paul Mallamaci
-
Patent number: 6617406Abstract: This invention is based upon the unexpected discovery that elastomeric trans-1,4-polybutadiene can be made by utilizing a catalyst system that is comprised of an organocobalt compound, an organoaluminum compound, a para-alkyl substituted phenol, and ortho-phenyl phenol wherein the molar ratio of the para-substituted phenol to the organoaluminum compound is within the range of about 1.2:1 to about 1.8:1, and wherein the molar ratio of the ortho-phenyl phenol to the organoaluminum compound is within the range of about 0.7:1 to about 1.3:1. Accordingly, the elastomeric trans-1,4-polybutadiene made by the process of this invention does not need to be heated, such as in a hot-house, before being used in making rubber stocks.Type: GrantFiled: August 30, 2001Date of Patent: September 9, 2003Assignee: The Goodyear Tire & Rubber CompanyInventor: Kenneth Floyd Castner
-
Publication number: 20030065114Abstract: This invention is based upon the unexpected discovery that elastomeric trans-1,4-polybutadiene can be made by utilizing a catalyst system that is comprised of an organocobalt compound, an organoaluminum compound, a para-alkyl substituted phenol, and ortho-phenyl phenol wherein the molar ratio of the para-substituted phenol to the organoaluminum compound is within the range of about 1.2:1 to about 1.8:1, and wherein the molar ratio of the ortho-phenyl phenol to the organoaluminum compound is within the range of about 0.7:1 to about 1.3:1. Accordingly, the elastomeric trans-1,4-polybutadiene made by the process of this invention does not need to be heated, such as in a hot-house, before being used in making rubber stocks.Type: ApplicationFiled: August 30, 2001Publication date: April 3, 2003Inventor: Kenneth Floyd Castner
-
Publication number: 20030013556Abstract: This invention is based upon the unexpected discovery that cis-1,4-polybutadiene that is synthesized utilizing organometallic catalyst systems has superior characteristics for utilization in solid golf ball cores if the polymerization is terminated utilizing a carboxylic acid of the structural formula RCOOH, wherein R represents an alkyl group containing from 1 to about 30 carbon atoms. This invention more specifically relates to a golf ball which is comprised of a solid core and a resin cover, wherein the solid core is comprised of cis-1,4-polybutadiene rubber which is made by polymerizing 1,3-butadiene in the presence of an organometallic catalyst system wherein the polymerization is short-stopped with a carboxylic acid of the structural formula RCOOH, wherein R represents an alkyl group containing from 1 to about 30 carbon atoms.Type: ApplicationFiled: June 17, 2002Publication date: January 16, 2003Inventors: Craig William Burkhart, Michael Lester Kerns, Kenneth Floyd Castner, Michael Joseph Rachita, Michael Paul Mallamaci
-
Publication number: 20020137849Abstract: This invention is based upon the unexpected discovery that cis-1,4-polybutadiene that is synthesized utilizing organometallic catalyst systems has superior characteristics for utilization in solid golf ball cores if the polymerization is terminated utilizing a fatty alcohol of the structural formula ROH, wherein R represents an alkyl group containing from 2 to about 30 carbon atoms. This invention more specifically relates to a golf ball which is comprised of a solid core and a resin cover, wherein the solid core is comprised of cis-1,4-polybutadiene rubber which is made by polymerizing 1,3-butadiene in the presence of an organometallic catalyst system wherein the polymerization is short-stopped with a fatty alcohol of the structural formula ROH, wherein R represents an alkyl group containing from 2 to about 30 carbon atoms.Type: ApplicationFiled: March 25, 2002Publication date: September 26, 2002Inventors: Michael Lester Kerns, Kenneth Floyd Castner, Michael Joseph Rachita
-
Patent number: 6310152Abstract: This invention is based upon the unexpected discovery that elastomeric trans-1,4-polybutadiene can be made by utilizing a catalyst system that is comprised of an organocobalt compound, an organoaluminum compound, a para-alkyl substituted phenol, and ortho-phenyl phenol wherein the molar ratio of the para-substituted phenol to the organoaluminum compound is within the range of about 1.2:1 to about 1.8:1, and wherein the molar ratio of the ortho-phenyl phenol to the organoaluminum compound is within the range of about 0.7:1 to about 1.3:1. Accordingly, the elastomeric trans-1,4-polybutadiene made by the process of this invention does not need to be heated, such as in a hot-house, before being used in making rubber stocks.Type: GrantFiled: October 24, 2000Date of Patent: October 30, 2001Assignee: The Goodyear Tire & Rubber CompanyInventor: Kenneth Floyd Castner
-
Patent number: 6284844Abstract: Syndiotactic 1,2-polybutadiene is a thermoplastic resin which has double bonds attached in an alternating fashion to its polymeric backbone. Films, fibers and molded articles can be made utilizing syndiotactic 1,2-polybutadiene. It can also be blended into rubbers and cocured therewith. It is generally preferred to synthesize syndiotactic 1,2-polybutadiene in an aqueous medium by suspension or emulsion polymerization utilizing a cobalt-based catalyst system. This invention is based upon the unexpected finding that certain substituted benzoic acids can be employed to deactivate such cobalt based catalyst systems.Type: GrantFiled: March 1, 1999Date of Patent: September 4, 2001Assignee: The Goodyear Tire & Rubber CompanyInventors: Tang Hong Wong, Kenneth Floyd Castner
-
Patent number: 6066705Abstract: By utilizing the vapor phase polymerization techniques of the present invention, numerous distinct and highly beneficial advantages are realized. For instance, cis-1,4-polyisoprene rubber and high cis-1,4-polybutadiene rubber having a consistent and controllable molecular weight can be easily and practically prepared without utilizing a solvent. The subject invention more specifically discloses a method for vapor phase polymerizing isoprene into cis-1,4-polyisoprene in a process comprising the steps of:(1) charging into a reaction zone said isoprene and a preformed catalyst system which is made by reacting an organoaluminum compound with titanium tetrachloride, preferably in the presence of at least one ether; wherein the isoprene is maintained in the vapor phase in said reaction zone by a suitable combination of temperature and pressure;(2) allowing said isoprene to polymerize into cis-1,4-polyisoprene at a temperature within the range of about 35.degree. C. to about 70.degree. C.Type: GrantFiled: May 2, 1997Date of Patent: May 23, 2000Assignee: The Goodyear Tire & Rubber CompanyInventors: Nissim Calderon, Kenneth Floyd Castner, Howard Allen Colvin, Joel Muse, Jr.
-
Patent number: 6013736Abstract: Various benefits can be attained by utilizing trans-1,4-polybutadiene in tire rubber compounds. For instance, the green strength of tire rubber compounds can be improved by including trans-1,4-polybutadiene therein. The inclusion of trans-1,4-polybutadiene in tire rubber compounds is also beneficial because it is strain crystallizable. However, due to its high melting point, it is normally necessary to heat trans-1,4-polybutadiene in order for it to be processed using conventional mixing equipment. This heating step is typically carried out by storing the trans-1,4-polybutadiene in a "hothouse" for a few days prior to its usage. During this storage period, the polymer typically undergoes undesirable oxidative crosslinking which is caused by residual cobalt catalyst and leads to gelation. In fact, the gelation can render the trans-1,4-polybutadiene unprocessable.Type: GrantFiled: February 16, 1998Date of Patent: January 11, 2000Assignee: The Goodyear Tire & Rubber CompanyInventor: Kenneth Floyd Castner
-
Patent number: 5919876Abstract: The synthesis of cis-1,4-polyisoprene by polymerizing isoprene with a catalyst system which is comprised of a titanium tetrahalide, a trialkylaluminum compound and diphenylether is plagued with the formation of gel. This invention is based upon the unexpected discovery that gel formation can be reduced by conducting such polymerizations in the presence of a diarylamine, such as para-styrenated diphenylamine. The subject invention more specifically discloses a process for synthesizing cis-1,4-polyisoprene having a low gel content which comprises polymerizing isoprene in an inert organic solvent with a preformed catalyst system which is made by reacting an organoaluminum compound with titanium tetrahalide, such as titanium tetrachloride, in the presence of at least one ether, wherein said polymerization is conducted at a temperature which is within the range of about 0.degree. C. to about 100.degree. C., and wherein said polymerization is conducted in the presence of a diarylamine.Type: GrantFiled: October 7, 1998Date of Patent: July 6, 1999Assignee: The Goodyear Tire & Rubber CompanyInventor: Kenneth Floyd Castner
-
Patent number: 5859156Abstract: By utilizing the vapor phase polymerization techniques of the present invention, numerous distinct and highly beneficial advantages are realized. For instance, cis-1,4-polyisoprene rubber and high cis-1,4-polybutadiene rubber having a consistent and controllable molecular weight can be easily and practically prepared without utilizing a solvent. The subject invention more specifically discloses a method for vapor phase polymerizing isoprene into cis-1,4-polyisoprene in a process comprising the steps of:(1) charging into a reaction zone said isoprene and a preformed catalyst system which is made by reacting an organoaluminum compound with titanium tetrachloride, preferably in the presence of at least one ether; wherein the isoprene is maintained in the vapor phase in said reaction zone by a suitable combination of temperature and pressure;(2) allowing said isoprene to polymerize into cis-1,4-polyisoprene in said reaction zone at a temperature within the range of about 0.degree. C. to about 100.degree. C.Type: GrantFiled: December 15, 1997Date of Patent: January 12, 1999Assignee: The Goodyear Tire & Rubber CompanyInventors: Nissim Calderon, Joel Muse, Jr., Howard Allen Colvin, Kenneth Floyd Castner
-
Patent number: 5834573Abstract: By utilizing the techniques of this invention, trans-1,4-polybutadiene can be synthesized continuously to a high level of conversion utilizing a low level of a highly active cobalt-based catalyst system. The trans-1,4-polybutadiene made with the cobalt-based catalyst system of this invention also typically has a molecular weight which is acceptable for use in tire applications without the need for employing a molecular weight regulator. It is also not typically necessary to utilize a gel inhibitor, such as carbon disulfide, in the polymerizations of this invention. Since a low level of residual cobalt is present in the trans-1,4-polybutadiene which is made utilizing the catalyst system of this invention, it is much more stable than trans-1,4-polybutadiene made with standard cobalt-based catalyst systems.Type: GrantFiled: May 21, 1997Date of Patent: November 10, 1998Assignee: The Goodyear Tire & Rubber CompanyInventor: Kenneth Floyd Castner
-
Patent number: 5811499Abstract: It has been determined that 1,3-butadiene monomer can be polymerized into cis-l,4-polybutadiene rubber utilizing a cobalt-based catalyst system which is comprised of (a) an organocobalt compound, (b) a trialkylaluminum compound and (c) hexafluoro-2-propanol. The use of this catalyst system results in extremely fast rates of polymerization. The molecular weight of the cis-1,4- polybutadiene rubber made utilizing this cobalt-based catalyst system can be regulated by conducting the polymerization in the presence of 1,5-cyclooctadiene. This present invention more specifically discloses a catalyst system which is particularly useful for polymerizing 1,3-butadiene monomer into cis-1,4-polybutadiene, said catalyst system being comprised of (a) an organocobalt compound, (b) a trialkylaluminum compound and (c) hexafluoro-2-propanol.Type: GrantFiled: October 6, 1997Date of Patent: September 22, 1998Assignee: The Goodyear Tire & Rubber CompanyInventor: Kenneth Floyd Castner
-
Patent number: 5733835Abstract: It has been determined that 1,3-butadiene monomer can be polymerized into cis-1,4-polybutadiene rubber utilizing a cobalt-based catalyst system which is comprised of (a) an organocobalt compound, (b) a trialkylaluminum compound and (c) hexafluoro-2-propanol. The use of this catalyst system results in extremely fast rates of polymerization. The molecular weight of the cis-1,4-polybutadiene rubber made utilizing this cobalt-based catalyst system can be regulated by conducting the polymerization in the presence of 1,5-cyclooctadiene. This present invention more specifically discloses a catalyst system which is particularly useful for polymerizing 1,3-butadiene monomer into cis-1,4-polybutadiene, said catalyst system being comprised of (a) an organocobalt compound, (b) a trialkylaluminum compound and (c) hexafluoro-2-propanol.Type: GrantFiled: August 5, 1996Date of Patent: March 31, 1998Assignee: The Goodyear Tire & Rubber CompanyInventor: Kenneth Floyd Castner
-
Patent number: 5652304Abstract: By utilizing the vapor phase polymerization techniques of the present invention, numerous distinct and highly beneficial advantages are realized. For instance, cis-1,4-polyisoprene rubber and high cis-1,4-polybutadiene rubber having a consistent and controllable molecular weight can be easily and practically prepared without utilizing a solvent. The subject invention more specifically discloses a method for vapor phase polymerizing isoprene into cis-1,4-polyisoprene in a process comprising the steps of:(1) charging into a reaction zone said isoprene and a preformed catalyst system which is made by reacting an organoaluminum compound with titanium tetrachloride, preferably in the presence of at least one ether; wherein the isoprene is maintained in the vapor phase in said reaction zone by a suitable combination of temperature and pressure;(2) allowing said isoprene to polymerize into cis-1,4-polyisoprene at a temperature within the range of about 35.degree. C. to about 70.degree. C.Type: GrantFiled: June 28, 1996Date of Patent: July 29, 1997Assignee: The Goodyear Tire & Rubber CompanyInventors: Nissim Calderon, Kenneth Floyd Castner, Howard Allen Colvin, Joel Muse, Jr.