Patents by Inventor Kenneth N. Hayes

Kenneth N. Hayes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9827427
    Abstract: An interactive representation of electrostimulation electrodes or vectors can be provided, such as for configuring combinations of electrostimulation electrodes. In an example, electrodes or test parameters can be presented graphically or in a table. A user interface can be configured to receive user-input designating electrode combinations or vectors for test or for use in programming an implantable or ambulatory medical device. The interface can be used to indicate suggested electrode combinations or vectors in response to a first selection of an electrode. Tests can be performed on electrode combinations and vectors, and the results of the tests can be presented to a user using the interactive representation. In an example, test results can be analyzed by a processor and optionally used to program an implantable or ambulatory medical device.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: November 28, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Kenneth N. Hayes, Keith L. Herrmann, James R. Kalgren, Aaron R. McCabe, Holly Elizabeth Rockweiler, Shibaji Shome, Krzysztof Z. Siejko
  • Patent number: 9649498
    Abstract: Various techniques are disclosed for quickly and efficiently determining cardiac pacing vectors that minimize phrenic nerve stimulation.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: May 16, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, Yanting Dong, Sunipa Saha, Holly Rockweiler, Kenneth N. Hayes, Krzysztof Z. Siejko, Clayton S. Foster
  • Patent number: 9295843
    Abstract: A system or apparatus can provide electrostimulations via an electrode configuration that can be selected from multiple electrode configurations, the electrostimulations of the type for inducing a desired heart contraction, or a neurostimulation response. The system or apparatus can allow communicating with an external device to receive an input indicating a degree of patient discomfort with an electrostimulation delivered using a first electrode configuration, and can associate information about the degree of discomfort with information about the corresponding first electrode configuration for use by a controller circuit in determining a second electrode configuration for delivering a subsequent electrostimulation.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: March 29, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Eric K. Enrooth, Sunipa Saha, Krzysztof Z. Siejko, Kenneth N. Hayes, Aaron R. McCabe
  • Publication number: 20160008610
    Abstract: An interactive representation of electrostimulation electrodes or vectors can be provided, such as for configuring combinations of electrostimulation electrodes. In an example, electrodes or test parameters can be presented graphically or in a table. A user interface can be configured to receive user-input designating electrode combinations or vectors for test or for use in programming an implantable or ambulatory medical device. The interface can be used to indicate suggested electrode combinations or vectors in response to a first selection of an electrode. Tests can be performed on electrode combinations and vectors, and the results of the tests can be presented to a user using the interactive representation. In an example, test results can be analyzed by a processor and optionally used to program an implantable or ambulatory medical device.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 14, 2016
    Inventors: Sunipa Saha, Kenneth N. Hayes, Keith L. Herrmann, James R. Kalgren, Aaron R. McCabe, Holly Elizabeth Rockweiler, Shibaji Shome, Krzysztof Z. Siejko
  • Patent number: 9138585
    Abstract: An interactive representation of electrostimulation electrodes or vectors can be provided, such as for configuring combinations of electrostimulation electrodes. In an example, electrodes or test parameters can be presented graphically or in a table. A user interface can be configured to receive user-input designating electrode combinations or vectors for test or for use in programming an implantable or ambulatory medical device. The interface can be used to indicate suggested electrode combinations or vectors in response to a first selection of an electrode. Tests can be performed on electrode combinations and vectors, and the results of the tests can be presented to a user using the interactive representation. In an example, test results can be analyzed by a processor and optionally used to program an implantable or ambulatory medical device.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: September 22, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Kenneth N. Hayes, Keith L. Herrmann, James Kalgren, Aaron R. McCabe, Holly Rockweiler, Shibaji Shome, Krzysztof Z. Siejko
  • Publication number: 20150134025
    Abstract: Various techniques are disclosed for quickly and efficiently determining cardiac pacing vectors that minimize phrenic nerve stimulation.
    Type: Application
    Filed: January 21, 2015
    Publication date: May 14, 2015
    Inventors: Deepa Mahajan, Yanting Dong, Sunipa Saha, Holly Rockweiler, Kenneth N. Hayes, Krzysztof Z. Siejko, Clayton S. Foster
  • Patent number: 8965507
    Abstract: Various techniques are disclosed for quickly and efficiently determining cardiac pacing vectors that minimize phrenic nerve stimulation.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: February 24, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, Yanting Dong, Sunipa Saha, Holly Rockweiler, Kenneth N. Hayes, Krzysztof Z. Siejko, Clayton S. Foster
  • Patent number: 8923966
    Abstract: An apparatus comprises a cardiac signal sensing circuit, a pacing therapy circuit, and a controller circuit. The controller circuit includes a safety margin calculation circuit. The controller circuit initiates delivery of pacing stimulation energy to the heart using a first energy level, changes the energy level by at least one of: a) increasing the energy from the first energy level until detecting that the pacing stimulation energy induces stable capture, or b) reducing the energy from the first energy level until detecting that the stimulation energy fails to induce capture, and continues changing the stimulation energy level until confirming stable capture or the failure of capture. The safety margin calculation circuit calculates a safety margin of pacing stimulation energy using at least one of a determined stability of a parameter associated with evoked response and a determined range of energy levels corresponding to stable capture or intermittent failure of capture.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: December 30, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, Shibaji Shome, Kenneth N. Hayes, Yanting Dong, Aaron R. McCabe, Scott A. Meyer, Kevin John Stalsberg
  • Publication number: 20140018875
    Abstract: An apparatus comprises a cardiac signal sensing circuit, a pacing therapy circuit, and a controller circuit. The controller circuit includes a safety margin calculation circuit. The controller circuit initiates delivery of pacing stimulation energy to the heart using a first energy level, changes the energy level by at least one of: a) increasing the energy from the first energy level until detecting that the pacing stimulation energy induces stable capture, or b) reducing the energy from the first energy level until detecting that the stimulation energy fails to induce capture, and continues changing the stimulation energy level until confirming stable capture or the failure of capture. The safety margin calculation circuit calculates a safety margin of pacing stimulation energy using at least one of a determined stability of a parameter associated with evoked response and a determined range of energy levels corresponding to stable capture or intermittent failure of capture.
    Type: Application
    Filed: September 19, 2013
    Publication date: January 16, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, Shibaji Shome, Kenneth N. Hayes, Yanting Dong, Aaron R. McCabe, Scott A. Meyer, Kevin John Stalsberg
  • Publication number: 20140005742
    Abstract: Various techniques are disclosed for quickly and efficiently determining cardiac pacing vectors that minimize phrenic nerve stimulation.
    Type: Application
    Filed: June 24, 2013
    Publication date: January 2, 2014
    Inventors: Deepa Mahajan, Yanting Dong, Sunipa Saha, Holly Rockweiler, Kenneth N. Hayes, Krzysztof Z. Siejko, Clayton S. Foster
  • Publication number: 20130310891
    Abstract: A system or apparatus can provide electrostimulations via an electrode configuration that can be selected from multiple electrode configurations, the electrostimulations of the type for inducing a desired heart contraction, or a neurostimulation response. The system or apparatus can allow communicating with an external device to receive an input indicating a degree of patient discomfort with an electrostimulation delivered using a first electrode configuration, and can associate information about the degree of discomfort with information about the corresponding first electrode configuration for use by a controller circuit in determining a second electrode configuration for delivering a subsequent electrostimulation.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 21, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Eric K. Enrooth, Sunipa Saha, Krzysztof Z. Siejko, Kenneth N. Hayes, Aaron R. McCabe
  • Patent number: 8565879
    Abstract: An apparatus comprises a cardiac signal sensing circuit, a pacing therapy circuit, and a controller circuit. The controller circuit includes a safety margin calculation circuit. The controller circuit initiates delivery of pacing stimulation energy to the heart using a first energy level, changes the energy level by at least one of: a) increasing the energy from the first energy level until detecting that the pacing stimulation energy induces stable capture, or b) reducing the energy from the first energy level until detecting that the stimulation energy fails to induce capture, and continues changing the stimulation energy level until confirming stable capture or the failure of capture. The safety margin calculation circuit calculates a safety margin of pacing stimulation energy using at least one of a determined stability of a parameter associated with evoked response and a determined range of energy levels corresponding to stable capture or intermittent failure of capture.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: October 22, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, Shibaji Shome, Kenneth N. Hayes, Yanting Dong, Aaron R. McCabe, Scott A. Meyer, Kevin John Stalsberg
  • Patent number: 8452405
    Abstract: Noncaptured atrial paces can result in long-short cardiac cycles which are proarrhythmic for ventricular tachyarrhythmia. Approaches are described which are directed to avoiding proarrhythmic long-short cycles. For cardiac cycles in which the atrial pace captures the atrium, a first post ventricular refractory period (PVARP) and a first A-A interval are used. For cardiac cycles in which the atrial pace does not capture the atrium, both an extended PVARP and an extended A-A interval are used. The A-A interval following a noncaptured atrial pace is extended from an atrial depolarization sensed during the extended PVARP.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: May 28, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Eric Enrooth, Yanting Dong, Kenneth N. Hayes, Gary T. Seim, Kevin John Stalsberg, Aaron McCabe
  • Patent number: 8369945
    Abstract: An implantable cardioverter defibrillator (ICD) has a programmable ICD energy level corresponding to the maximum defibrillation energy deliverable with each defibrillation shock pulse. The ICD energy level is programmable within the maximum energy capacity of the defibrillation capacitor(s) of the ICD. In various embodiments, after a user enters the ICD energy level, one or more corresponding ICD performance parameters are presented. Restrictions are applied to the energy level programming of the ICD to ensure the predictability of the one or more ICD performance parameters.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: February 5, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Nick A. Youker, Kenneth N. Hayes, William J. Linder
  • Publication number: 20120303082
    Abstract: Discrimination between different types of possible cardiac pacing responses may depend on the timing of expected features that are sensed within a temporal framework. The temporal framework may include classification intervals, blanking periods and appropriately timed back up paces. The classification intervals and blanking periods of the temporal framework are intervals of time that have time parameters that include start time, end time, and length. The relationships and timing parameters of the elements of the temporal framework, e.g., blanking periods, classification intervals, delay periods, and backup pacing, should support detection of features used to discriminate between different types of pacing responses. As the system learns the morphology of the particular patient by analyzing the waveform of the pacing response signal, the temporal framework for pacing response determination may be adjusted to accommodate the individual patient.
    Type: Application
    Filed: November 29, 2011
    Publication date: November 29, 2012
    Inventors: Yanting Dong, Shibaji Shome, Aaron McCabe, Amy J. Brisben, Clayton Foster, David W. Yost, Kenneth N. Hayes
  • Publication number: 20120035685
    Abstract: An interactive representation of electrostimulation electrodes or vectors can be provided, such as for configuring combinations of electrostimulation electrodes. In an example, electrodes or test parameters can be presented graphically or in a table. A user interface can be configured to receive user-input designating electrode combinations or vectors for test or for use in programming an implantable or ambulatory medical device. The interface can be used to indicate suggested electrode combinations or vectors in response to a first selection of an electrode. Tests can be performed on electrode combinations and vectors, and the results of the tests can be presented to a user using the interactive representation. In an example, test results can be analyzed by a processor and optionally used to program an implantable or ambulatory medical device.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 9, 2012
    Inventors: Sunipa Saha, Kenneth N. Hayes, Keith L. Herrmann, James Kalgren, Aaron R. McCabe, Holly Rockweiler, Shibaji Shome, Krzysztof Z. Siejko
  • Publication number: 20110245890
    Abstract: An apparatus comprises a cardiac signal sensing circuit, a pacing therapy circuit, and a controller circuit. The controller circuit includes a safety margin calculation circuit. The controller circuit initiates delivery of pacing stimulation energy to the heart using a first energy level, changes the energy level by at least one of: a) increasing the energy from the first energy level until detecting that the pacing stimulation energy induces stable capture, or b) reducing the energy from the first energy level until detecting that the stimulation energy fails to induce capture, and continues changing the stimulation energy level until confirming stable capture or the failure of capture. The safety margin calculation circuit calculates a safety margin of pacing stimulation energy using at least one of a determined stability of a parameter associated with evoked response and a determined range of energy levels corresponding to stable capture or intermittent failure of capture.
    Type: Application
    Filed: March 25, 2011
    Publication date: October 6, 2011
    Inventors: Amy Jean Brisben, Shibaji Shome, Kenneth N. Hayes, Yanting Dong, Aaron R. McCabe, Scott A. Meyer, Kevin John Stalsberg
  • Publication number: 20100286743
    Abstract: Noncaptured atrial paces can result in long-short cardiac cycles which are proarrhythmic for ventricular tachyarrhythmia. Approaches are described which are directed to avoiding proarrhythmic long-short cycles. For cardiac cycles in which the atrial pace captures the atrium, a first post ventricular refractory period (PVARP) and a first A-A interval are used. For cardiac cycles in which the atrial pace does not capture the atrium, both an extended PVARP and an extended A-A interval are used. The A-A interval following a noncaptured atrial pace is extended from an atrial depolarization sensed during the extended PVARP.
    Type: Application
    Filed: May 3, 2010
    Publication date: November 11, 2010
    Inventors: Eric K. Enrooth, Yanting Dong, Kenneth N. Hayes, Gary T. Seim, Kevin John Stalsberg, Aaron McCabe