Patents by Inventor Kenta NIKI

Kenta NIKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230416603
    Abstract: A semiconductor nanoparticle includes a core and a shell covering a surface of the core. The shell has a larger bandgap energy than the core and is in heterojunction with the core. The semiconductor nanoparticle emits light when irradiated with light. The core is made of a semiconductor that contains M1, M2, and Z. M1 is at least one element selected from the group consisting of Ag, Cu, and Au. M2 is at least one element selected from the group consisting of Al, Ga, In and Tl. Z is at least one element selected from the group consisting of S, Se, and Te. The shell is made of a semiconductor that consists essentially of a Group 13 element and a Group 16 element.
    Type: Application
    Filed: September 11, 2023
    Publication date: December 28, 2023
    Applicants: OSAKA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM, NICHIA CORPORATION
    Inventors: Susumu KUWABATA, Taro UEMATSU, Kazutaka WAJIMA, Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Daisuke OYAMATSU, Kenta NIKI
  • Patent number: 11811007
    Abstract: A method for manufacturing a light emitting device includes preparing a light emitting device including: a package defining a recess; a first light source placed within the recess, and including a first light emitting element and a first wavelength conversion member; a second light source placed within the recess; and a second wavelength conversion member in contact with and covering the first light source and the second light source, the first light source and the second light source being configured to emit light independently of each other. The method further includes: emitting light simultaneously from the first light source and the second light source to obtain mixed light for which light from the first light source, light from the second light source, and light from the second wavelength conversion member are mixed; determining a chromaticity of the mixed light; and binning the mixed light based on the chromaticity.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 7, 2023
    Assignee: NICHIA CORPORATION
    Inventors: Shigeharu Yamauchi, Kenta Niki
  • Patent number: 11788003
    Abstract: A semiconductor nanoparticle includes a core and a shell covering a surface of the core. The shell has a larger bandgap energy than the core and is in heterojunction with the core. The semiconductor nanoparticle emits light when irradiated with light. The core is made of a semiconductor that contains M1, M2, and Z. M1 is at least one element selected from the group consisting of Ag, Cu, and Au. M2 is at least one element selected from the group consisting of Al, Ga, In and Tl. Z is at least one element selected from the group consisting of S, Se, and Te. The shell is made of a semiconductor that consists essentially of a Group 13 element and a Group 16 element.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: October 17, 2023
    Assignees: OSAKA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM, NICHIA CORPORATION
    Inventors: Susumu Kuwabata, Taro Uematsu, Kazutaka Wajima, Tsukasa Torimoto, Tatsuya Kameyama, Daisuke Oyamatsu, Kenta Niki
  • Publication number: 20230253533
    Abstract: Semiconductor nanoparticles including Ag, In, Ga, and S are provided. In the semiconductor nanoparticles, a ratio of a number of Ga atoms to a total number of In and Ga atoms is 0.95 or less. The semiconductor nanoparticles emit light having an emission peak with a wavelength in a range of from 500 nm to less than 590 nm, and a half bandwidth of 70 nm or less, and have an average particle diameter of 10 nm or less.
    Type: Application
    Filed: March 28, 2023
    Publication date: August 10, 2023
    Applicants: NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Marino KISHI, Chie MIYAMAE, Susumu KUWABATA, Taro UEMATSU, Daisuke OYAMATSU, Kenta NIKI
  • Publication number: 20230243485
    Abstract: A light emitting device includes one or more light emitting elements and a plurality of fluorescent materials, and emits a first light, a second light, and a third light, wherein the first light has a correlated color temperature between 1,500 K and 3,500 K and a color rendering index R9 of 50 or more, the second light has a correlated color temperature between 3,500 K and 5,500 K and a color rendering index R9 of 50 or more, the third light has values of X and Y coordinates in the chromaticity diagram of the CIE1931 color system smaller than the values of X and Y coordinates at a color temperature of 5,500 K on the black body radiation locus, and a light having a correlated color temperature of 6,500 K has a color rendering index R9 of 50 or more and a melanopic ratio of 1.0 or more.
    Type: Application
    Filed: January 26, 2023
    Publication date: August 3, 2023
    Applicant: NICHIA CORPORATION
    Inventors: Kenta NIKI, Jun TAKAHASHI
  • Patent number: 11652194
    Abstract: Semiconductor nanoparticles including Ag, In, Ga, and S are provided. In the semiconductor nanoparticles, a ratio of a number of Ga atoms to a total number of In and Ga atoms is 0.95 or less. The semiconductor nanoparticles emit light having an emission peak with a wavelength in a range of from 500 nm to less than 590 nm, and a half bandwidth of 70 nm or less, and have an average particle diameter of 10 nm or less.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: May 16, 2023
    Assignees: NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa Torimoto, Tatsuya Kameyama, Marino Kishi, Chie Miyamae, Susumu Kuwabata, Taro Uematsu, Daisuke Oyamatsu, Kenta Niki
  • Patent number: 11598508
    Abstract: A light emitting device includes one or more light emitting elements and a plurality of fluorescent materials, and emits a first light, a second light, and a third light, wherein the first light has a correlated color temperature between 1,500 K and 3,500 K and a color rendering index R9 of 50 or more, the second light has a correlated color temperature between 3,500 K and 5,500 K and a color rendering index R9 of 50 or more, the third light has values of X and Y coordinates in the chromaticity diagram of the CIE1931 color system smaller than the values of X and Y coordinates at a color temperature of 5,500 K on the black body radiation locus, and a light having a correlated color temperature of 6,500 K has a color rendering index R9 of 50 or more and a melanopic ratio of 1.0 or more.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 7, 2023
    Assignee: NICHIA CORPORATION
    Inventors: Kenta Niki, Jun Takahashi
  • Publication number: 20220017819
    Abstract: A semiconductor nanoparticle includes a core and a shell covering a surface of the core. The shell has a larger bandgap energy than the core and is in heterojunction with the core. The semiconductor nanoparticle emits light when irradiated with light. The core is made of a semiconductor that contains M1, M2, and Z. M1 is at least one element selected from the group consisting of Ag, Cu, and Au. M2 is at least one element selected from the group consisting of Al, Ga, In and Tl. Z is at least one element selected from the group consisting of S, Se, and Te. The shell is made of a semiconductor that consists essentially of a Group 13 element and a Group 16 element.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 20, 2022
    Applicants: OSAKA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM, NICHIA CORPORATION
    Inventors: Susumu KUWABATA, Taro UEMATSU, Kazutaka WAJIMA, Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Daisuke OYAMATSU, Kenta NIKI
  • Publication number: 20210404632
    Abstract: A light emitting device includes one or more light emitting elements and a plurality of fluorescent materials, and emits a first light, a second light, and a third light, wherein the first light has a correlated color temperature between 1,500 K and 3,500 K and a color rendering index R9 of 50 or more, the second light has a correlated color temperature between 3,500 K and 5,500 K and a color rendering index R9 of 50 or more, the third light has values of X and Y coordinates in the chromaticity diagram of the CIE1931 color system smaller than the values of X and Y coordinates at a color temperature of 5,500 K on the black body radiation locus, and a light having a correlated color temperature of 6,500 K has a color rendering index R9 of 50 or more and a melanopic ratio of 1.0 or more.
    Type: Application
    Filed: June 30, 2021
    Publication date: December 30, 2021
    Applicant: NICHIA CORPORATION
    Inventors: Kenta Niki, Jun Takahashi
  • Publication number: 20210343908
    Abstract: Semiconductor nanoparticles including Ag, In, Ga, and S are provided. In the semiconductor nanoparticles, a ratio of a number of Ga atoms to a total number of In and Ga atoms is 0.95 or less. The semiconductor nanoparticles emit light having an emission peak with a wavelength in a range of from 500 nm to less than 590 nm, and a half bandwidth of 70 nm or less, and have an average particle diameter of 10 nm or less.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Applicants: NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Marino KISHI, Chie MIYAMAE, Susumu KUWABATA, Taro UEMATSU, Daisuke OYAMATSU, Kenta NIKI
  • Patent number: 11162024
    Abstract: A semiconductor nanoparticle includes a core and a shell covering a surface of the core. The shell has a larger bandgap energy than the core and is in heterojunction with the core. The semiconductor nanoparticle emits light when irradiated with light. The core is made of a semiconductor that contains M1, M2, and Z. M1 is at least one element selected from the group consisting of Ag, Cu, and Au. M2 is at least one element selected from the group consisting of Al, Ga, In and Tl. Z is at least one element selected from the group consisting of S, Se, and Te. The shell is made of a semiconductor that consists essentially of a Group 13 element and a Group 16 element.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: November 2, 2021
    Assignees: OSAKA UNIVERSITY, National University Corporation Tokai National Higher Education and Research System, NICHIA CORPORATION
    Inventors: Susumu Kuwabata, Taro Uematsu, Kazutaka Wajima, Tsukasa Torimoto, Tatsuya Kameyama, Daisuke Oyamatsu, Kenta Niki
  • Patent number: 11101413
    Abstract: Semiconductor nanoparticles including Ag, In, Ga, and S are provided. In the semiconductor nanoparticles, a ratio of a number of Ga atoms to a total number of In and Ga atoms is 0.95 or less. The semiconductor nanoparticles emit light having an emission peak with a wavelength in a range of from 500 nm to less than 590 nm, and a half bandwidth of 70 nm or less, and have an average particle diameter of 10 nm or less.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: August 24, 2021
    Assignees: NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa Torimoto, Tatsuya Kameyama, Marino Kishi, Chie Miyamae, Susumu Kuwabata, Taro Uematsu, Daisuke Oyamatsu, Kenta Niki
  • Publication number: 20200381593
    Abstract: A method for manufacturing a light emitting device includes preparing a light emitting device including: a package defining a recess; a first light source placed within the recess, and including a first light emitting element and a first wavelength conversion member; a second light source placed within the recess; and a second wavelength conversion member in contact with and covering the first light source and the second light source, the first light source and the second light source being configured to emit light independently of each other. The method further includes: emitting light simultaneously from the first light source and the second light source to obtain mixed light for which light from the first light source, light from the second light source, and light from the second wavelength conversion member are mixed; determining a chromaticity of the mixed light; and binning the mixed light based on the chromaticity.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 3, 2020
    Applicant: NICHIA CORPORATION
    Inventors: Shigeharu YAMAUCHI, Kenta NIKI
  • Publication number: 20200140752
    Abstract: A semiconductor nanoparticle includes a core and a shell covering a surface of the core. The shell has a larger bandgap energy than the core and is in heterojunction with the core. The semiconductor nanoparticle emits light when irradiated with light. The core is made of a semiconductor that contains M1, M2, and Z. M1 is at least one element selected from the group consisting of Ag, Cu, and Au. M2 is at least one element selected from the group consisting of Al, Ga, In and Tl. Z is at least one element selected from the group consisting of S, Se, and Te. The shell is made of a semiconductor that consists essentially of a Group 13 element and a Group 16 element.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 7, 2020
    Applicants: OSAKA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Susumu KUWABATA, Taro UEMATSU, Kazutaka WAJIMA, Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Daisuke OYAMATSU, Kenta NIKI
  • Patent number: 10563122
    Abstract: A semiconductor nanoparticle includes a core and a shell covering a surface of the core. The shell has a larger bandgap energy than the core and is in heterojunction with the core. The semiconductor nanoparticle emits light when irradiated with light. The core is made of a semiconductor that contains M1, M2, and Z. M1 is at least one element selected from the group consisting of Ag, Cu, and Au. M2 is at least one element selected from the group consisting of Al, Ga, In and Tl. Z is at least one element selected from the group consisting of S, Se, and Te. The shell is made of a semiconductor that consists essentially of a Group 13 element and a Group 16 element.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: February 18, 2020
    Assignees: OSAKA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Susumu Kuwabata, Taro Uematsu, Kazutaka Wajima, Tsukasa Torimoto, Tatsuya Kameyama, Daisuke Oyamatsu, Kenta Niki
  • Publication number: 20200006601
    Abstract: Semiconductor nanoparticles including Ag, In, Ga, and S are provided. In the semiconductor nanoparticles, a ratio of a number of Ga atoms to a total number of In and Ga atoms is 0.95 or less. The semiconductor nanoparticles emit light having an emission peak with a wavelength in a range of from 500 nm to less than 590 nm, and a half bandwidth of 70 nm or less, and have an average particle diameter of 10 nm or less.
    Type: Application
    Filed: February 28, 2018
    Publication date: January 2, 2020
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, OSAKA UNIVERSITY, NICHIA CORPORATION
    Inventors: Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Marino KISHI, Chie MIYAMAE, Susumu KUWABATA, Taro UEMATSU, Daisuke OYAMATSU, Kenta NIKI
  • Publication number: 20170267924
    Abstract: A semiconductor nanoparticle includes a core and a shell covering a surface of the core. The shell has a larger bandgap energy than the core and is in heterojunction with the core. The semiconductor nanoparticle emits light when irradiated with light. The core is made of a semiconductor that contains M1, M2, and Z. M1 is at least one element selected from the group consisting of Ag, Cu, and Au. M2 is at least one element selected from the group consisting of Al, Ga, In and Tl. Z is at least one element selected from the group consisting of S, Se, and Te. The shell is made of a semiconductor that consists essentially of a Group 13 element and a Group 16 element.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 21, 2017
    Applicants: OSAKA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, NICHIA CORPORATION
    Inventors: Susumu KUWABATA, Taro UEMATSU, Kazutaka WAJIMA, Tsukasa TORIMOTO, Tatsuya KAMEYAMA, Daisuke OYAMATSU, Kenta NIKI