Patents by Inventor Kentaro Ooka

Kentaro Ooka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8421117
    Abstract: In a semiconductor device including a protection diode for preventing electrostatic breakdown employing a low capacitance protection diode, an occupation area of a Zener diode as a voltage limiting element is not needed on a front surface of a semiconductor substrate. A P+ type embedded diffusion layer is formed in a P+ type semiconductor substrate. This is then covered by a non-doped first epitaxial layer. A high resistivity N type second epitaxial layer is then formed on the first epitaxial layer. The second epitaxial layer is divided by a P+ isolation layer into a first protection diode forming region and a second protection diode forming region. An N+ type embedded layer extending from the front surface of the first epitaxial layer of the first protection diode forming region to the first epitaxial layer and the second epitaxial layer, and so on are then formed. A Zener diode is formed by a P+ type upward diffusion layer extending from the P+ type embedded diffusion layer and the N+ type embedded layer.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: April 16, 2013
    Assignee: ON Semiconductor Trading, Ltd.
    Inventors: Keiji Mita, Kentaro Ooka
  • Publication number: 20110309476
    Abstract: In a semiconductor device including a protection diode for preventing electrostatic breakdown employing a low capacitance protection diode, an occupation area of a Zener diode as a voltage limiting element is not needed on a front surface of a semiconductor substrate. A P+ type embedded diffusion layer is formed in a P+ type semiconductor substrate. This is then covered by a non-doped first epitaxial layer. A high resistivity N type second epitaxial layer is then formed on the first epitaxial layer. The second epitaxial layer is divided by a P+ isolation layer into a first protection diode forming region and a second protection diode forming region. An N+ type embedded layer extending from the front surface of the first epitaxial layer of the first protection diode forming region to the first epitaxial layer and the second epitaxial layer, and so on are then formed. A Zener diode is formed by a P+ type upward diffusion layer extending from the P+ type embedded diffusion layer and the N+ type embedded layer.
    Type: Application
    Filed: June 14, 2011
    Publication date: December 22, 2011
    Applicant: ON Semiconductor Trading, Ltd.
    Inventors: Keiji MITA, Kentaro Ooka
  • Patent number: 8080863
    Abstract: A conventional semiconductor device, for example, a lateral PNP transistor has a problem that it is difficult to obtain a desired current-amplification factor while maintaining a breakdown voltage characteristic without increasing the device size. In a semiconductor device, that is a lateral PNP transistor, according to the present invention, an N type epitaxial layer is formed on a P type single crystal silicon substrate. The epitaxial layer is used as a base region. Moreover, molybdenum (Mo) is diffused in the substrate and the epitaxial layer. With this structure, the base current is adjusted, and thereby a desired current-amplification factor (hFE) of the lateral PNP transistor is achieved.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: December 20, 2011
    Inventors: Keiji Mita, Yasuhiro Tamada, Kentaro Ooka
  • Patent number: 7619299
    Abstract: In a semiconductor device of the present invention, an N type epitaxial layer is formed on a P type single crystal silicon substrate. In the substrate and the epitaxial layer, an N type buried diffusion layer is formed on a P type buried diffusion layer. With this structure, an upward expansion of the P type buried diffusion layer is checked and a thickness of the epitaxial layer can be made small while maintaining the breakdown voltage characteristics of a power semiconductor element. Accordingly, a device size of a control semiconductor element can be reduced.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: November 17, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Keiji Mita, Kentaro Ooka
  • Publication number: 20080023796
    Abstract: A conventional semiconductor device, for example, a lateral PNP transistor has a problem that it is difficult to obtain a desired current-amplification factor while maintaining a breakdown voltage characteristic without increasing the device size. In a semiconductor device, that is a lateral PNP transistor, according to the present invention, an N type epitaxial layer is formed on a P type single crystal silicon substrate. The epitaxial layer is used as a base region. Moreover, molybdenum (Mo) is diffused in the substrate and the epitaxial layer. With this structure, the base current is adjusted, and thereby a desired current-amplification factor (hFE) of the lateral PNP transistor is achieved.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 31, 2008
    Applicants: SANYO ELECTRIC CO., LTD., SANYO SEMICONDUCTOR CO., LTD., SANYO SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Keiji Mita, Yasuhiro Tamada, Kentaro Ooka
  • Publication number: 20070123006
    Abstract: In a semiconductor device of the present invention, an N type epitaxial layer is formed on a P type single crystal silicon substrate. In the substrate and the epitaxial layer, an N type buried diffusion layer is formed on a P type buried diffusion layer. With this structure, an upward expansion of the P type buried diffusion layer is checked and a thickness of the epitaxial layer can be made small while maintaining the breakdown voltage characteristics of a power semiconductor element. Accordingly, a device size of a control semiconductor element can be reduced.
    Type: Application
    Filed: November 21, 2006
    Publication date: May 31, 2007
    Inventors: Keiji Mita, Kentaro Ooka