Patents by Inventor Kerem Pekkan

Kerem Pekkan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230363896
    Abstract: Artificial heart valve structures and methods of their fabrication are disclosed. The heart valve structures may be fabricated from a biocompatible polymer and include one or more heart valve leaflet structures incorporated within a conduit. The valve structures may incorporate one or more conduit sinuses, as well as a gap between the lower margin of the valve leaflets and the interior of the conduit. In addition, the valve structures may include one or more valve sinuses created in a space between the valve leaflets and the conduit inner surface. Computational fluid dynamics and mechanical modeling may be used to design the valve leaflets with optimal characteristics. A heart valve structure may also incorporate a biodegradable component to which cells may adhere. The incorporated cells may arise from patient cells migrating to the biodegradable component, or the component may be pre-seeded with cells prior to implantation in a patient.
    Type: Application
    Filed: April 24, 2023
    Publication date: November 16, 2023
    Applicants: CARNEGIE MELLON UNIVERSITY, UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
    Inventors: Masahiro YOSHIDA, C. Douglas BERNSTEIN, Onur DUR, Kerem PEKKAN
  • Patent number: 11672651
    Abstract: Artificial heart valve structures and methods of their fabrication are disclosed. The heart valve structures may be fabricated from a biocompatible polymer and include one or more heart valve leaflet structures incorporated within a conduit. The valve structures may incorporate one or more conduit sinuses, as well as a gap between the lower margin of the valve leaflets and the interior of the conduit. In addition, the valve structures may include one or more valve sinuses created in a space between the valve leaflets and the conduit inner surface. Computational fluid dynamics and mechanical modeling may be used to design the valve leaflets with optimal characteristics. A heart valve structure may also incorporate a biodegradable component to which cells may adhere The incorporated cells may arise from patient cells migrating to the biodegradable component, or the component may be pre-seeded with cells prior to implantation in a patient.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: June 13, 2023
    Assignees: CARNEGIE MELLON UNIVERSITY, UNIVERSITY OF PITTSBURGH
    Inventors: Masahiro Yoshida, C. Douglas Bernstein, Onur Dur, Kerem Pekkan
  • Patent number: 11311713
    Abstract: The present invention relates to an implantable self-driven pump for use as a cavopulmonary assist device. The invention comprises an aortic turbine that uses some systemic blood from the left ventricle as an energy source and a venous pump that is coupled magnetically or mechanically to the turbine. The present invention more particularly relates to a cavopulmonary assist device (10) for a total cavopulmonary connection with superior vena cava-pulmonary artery anastomosis and inferior vena cava-pulmonary artery bridging via a conduit (9), said cavopulmonary assist device (10) comprising a pump unit (20) and a turbine unit (30) coupled by a shaft (401).
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: April 26, 2022
    Assignee: KOC UNIVERSITESI
    Inventor: Kerem Pekkan
  • Publication number: 20200306432
    Abstract: The present invention relates to an implantable self-driven pump for use as a cavopulmonary assist device. The invention comprises an aortic turbine that uses some systemic blood from the left ventricle as an energy source and a venous pump that is coupled magnetically or mechanically to the turbine. The present invention more particularly relates to a cavopulmonary assist device (10) for a total cavopulmonary connection with superior vena cava-pulmonary artery anastomosis and inferior vena cava-pulmonary artery bridging via a conduit (9), said cavopulmonary assist device (10) comprising a pump unit (20) and a turbine unit (30) coupled by a shaft (401).
    Type: Application
    Filed: June 16, 2016
    Publication date: October 1, 2020
    Inventor: Kerem Pekkan
  • Patent number: 10729529
    Abstract: The present disclosure relates to a system for manufacturing of vascular patches in the form pre-operative surgical planning prototypes providing optimized patient specific 3-D patch geometries. The present disclosure relates more particularly to a patch generation device for manufacturing of vascular patches in the form pre-operative surgical planning prototypes providing optimized patient-specific patch geometries, said patch generation device comprising a processing unit effectuating processing of the optimized patient-specific patch geometries.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: August 4, 2020
    Assignee: Koc Universitesi
    Inventors: Kerem Pekkan, Senol Piskin
  • Publication number: 20200170790
    Abstract: Artificial heart valve structures and methods of their fabrication are disclosed. The heart valve structures may be fabricated from a biocompatible polymer and include one or more heart valve leaflet structures incorporated within a conduit. The valve structures may incorporate one or more conduit sinuses, as well as a gap between the lower margin of the valve leaflets and the interior of the conduit. In addition, the valve structures may include one or more valve sinuses created in a space between the valve leaflets and the conduit inner surface. Computational fluid dynamics and mechanical modeling may be used to design the valve leaflets with optimal characteristics. A heart valve structure may also incorporate a biodegradable component to which cells may adhere The incorporated cells may arise from patient cells migrating to the biodegradable component, or the component may be pre-seeded with cells prior to implantation in a patient.
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Applicants: CARNEGIE MELLON UNIVERSITY, UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
    Inventors: Masahiro YOSHIDA, C. Douglas BERNSTEIN, Onur DUR, Kerem PEKKAN
  • Patent number: 10639103
    Abstract: This invention is related to an operation scenario flow, mechanical modeling and analysis system comprising web based, (i) growth (ii) scaling and (iii) quality control aimed, patient based fast prototyping functions, for newborn and fetus cardiovascular repair operations, developed in order to be used for training of doctors and patient specific post surgery performance prediction in hospitals following and prior to, cardiovascular operations within the field of bioengineering in the health sector. Moreover it can be used for both vivo implantation plans of patient specific cardiovascular devices (custom cardiac valve and cardiac support pumps) and adaptation of said devices to the physiology of the patient.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: May 5, 2020
    Inventors: Senol Piskin, Kerem Pekkan, Mehmet Berk Yigit
  • Patent number: 10624737
    Abstract: Artificial heart valve structures and methods of their fabrication are disclosed. The heart valve structures may be fabricated from a biocompatible polymer and include one or more heart valve leaflet structures incorporated within a conduit. The valve structures may incorporate one or more conduit sinuses, as well as a gap between the lower margin of the valve leaflets and the interior of the conduit. In addition, the valve structures may include one or more valve sinuses created in a space between the valve leaflets and the conduit inner surface. Computational fluid dynamics and mechanical modeling may be used to design the valve leaflets with optimal characteristics. A heart valve structure may also incorporate a biodegradable component to which cells may adhere The incorporated cells may arise from patient cells migrating to the biodegradable component, or the component may be pre-seeded with cells prior to implantation in a patient.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: April 21, 2020
    Assignees: CARNEGIE MELLON UNIVERSITY, UNIVERSITY OF PITTSBURGH—OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
    Inventors: Masahiro Yoshida, C. Douglas Bernstein, Onur Dur, Kerem Pekkan
  • Publication number: 20180078356
    Abstract: The present disclosure relates to a system for manufacturing of vascular patches in the form pre-operative surgical planning prototypes providing optimized patient specific 3-D patch geometries. The present disclosure relates more particularly to a patch generation device for manufacturing of vascular patches in the form pre-operative surgical planning prototypes providing optimized patient-specific patch geometries, said patch generation device comprising a processing unit effectuating processing of the optimized patient-specific patch geometries.
    Type: Application
    Filed: November 28, 2017
    Publication date: March 22, 2018
    Applicant: Koc Universitesi
    Inventors: Kerem Pekkan, Senol Piskin
  • Patent number: 9662432
    Abstract: A novel arterial cannula tip includes an elongated body having an expanded four-lobe swirl inducer and a diverging diffuser. The swirl inducer presents micro-scale blood-wetting features that help to enhance the jet or core of the flow of blood sufficiently to delay the onset of turbulence and facilitate a strongly coherent blood outflow jet as it enters the cannulated artery, while the diverging diffuser reduces exit force and promotes and laminar flow which mitigates intimal vascular damage owing to high wall shear stresses at regions of jet impingement. When used in conjunction with an aortic cannula, the device facilitates neuroprotection by way of improved cerebral perfusion.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: May 30, 2017
    Assignee: Carnegie Mellon University
    Inventors: Prahlad Menon Gopalakrishna, Kerem Pekkan
  • Patent number: 9585746
    Abstract: Artificial heart valve structures and methods of their fabrication are disclosed. The heart valve structures may be fabricated from a biocompatible polymer and include one or more heart valve leaflet structures incorporated within a conduit. The valve structures may incorporate one or more conduit sinuses, as well as a gap between the lower margin of the valve leaflets and the interior of the conduit. In addition, the valve structures may include one or more valve sinuses created in a space between the valve leaflets and the conduit inner surface. Computational fluid dynamics and mechanical modeling may be used to design the valve leaflets with optimal characteristics. A heart valve structure may also incorporate a biodegradable component to which cells may adhere The incorporated cells may arise from patient cells migrating to the biodegradable component, or the component may be pre-seeded with cells prior to implantation in a patient.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: March 7, 2017
    Assignees: Carnegie Mellon University, University of Pittsburgh-Of the Commonwealth System of Higher Education
    Inventors: Masahiro Yoshida, C. Douglas Bernstein, Onur Dur, Kerem Pekkan
  • Publication number: 20160278866
    Abstract: This invention is related to an operation scenario flow, mechanical modeling and analysis system comprising web based, (i) growth (ii) scaling and (iii) quality control aimed, patient based fast prototyping functions, for newborn and fetus cardiovascular repair operations, developed in order to be used for training of doctors and patient specific post surgery performance prediction in hospitals following and prior to, cardiovascular operations within the field of bioengineering in the health sector. Moreover it can be used for both vivo implantation plans of patient specific cardiovascular devices (custom cardiac valve and cardiac support pumps) and adaptation of said devices to the physiology of the patient.
    Type: Application
    Filed: July 11, 2014
    Publication date: September 29, 2016
    Inventors: Senol PISKIN, Kerem PEKKAN, Mehmet Berk YIGIT
  • Publication number: 20150165110
    Abstract: A novel arterial cannula tip includes an elongated body having an expanded four-lobe swirl inducer and a diverging diffuser. The swirl inducer presents micro-scale blood-wetting features that help to enhance the jet or core of the flow of blood sufficiently to delay the onset of turbulence and facilitate a strongly coherent blood outflow jet as it enters the cannulated artery, while the diverging diffuser reduces exit force and promotes and laminar flow which mitigates intimal vascular damage owing to high wall shear stresses at regions of jet impingement. When used in conjunction with an aortic cannula, the device facilitates neuroprotection by way of improved cerebral perfusion.
    Type: Application
    Filed: May 28, 2013
    Publication date: June 18, 2015
    Applicant: Carnegie Mellon University
    Inventors: Prahlad Menon Gopalakrishna, Kerem Pekkan
  • Publication number: 20140288642
    Abstract: Artificial heart valve structures and methods of their fabrication are disclosed. The heart valve structures may be fabricated from a biocompatible polymer and include one or more heart valve leaflet structures incorporated within a conduit. The valve structures may incorporate one or more conduit sinuses, as well as a gap between the lower margin of the valve leaflets and the interior of the conduit. In addition, the valve structures may include one or more valve sinuses created in a space between the valve leaflets and the conduit inner surface. Computational fluid dynamics and mechanical modeling may be used to design the valve leaflets with optimal characteristics. A heart valve structure may also incorporate a biodegradable component to which cells may adhere The incorporated cells may arise from patient cells migrating to the biodegradable component, or the component may be pre-seeded with cells prior to implantation in a patient.
    Type: Application
    Filed: July 30, 2012
    Publication date: September 25, 2014
    Applicants: UNIVERSITY OF PITTSBURG - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, CARNEGIE MELLON UNIVERSITY
    Inventors: Masahiro Yoshida, C. Douglas Bernstein, Onur Dur, Kerem Pekkan
  • Publication number: 20080021368
    Abstract: A device for use in the total cavopulmonary connection (TCPC) in order to optimize its hemodynamics. Although the current procedure of choice for single ventricle heart repairs, the TCPC has reduced the post-operative mortality to the level of simpler types of congenital heart disease repairs, Fontan patients are still subjected to serious long-term complications. The TCPC procedure, which restores the vital separation between oxygenated and deoxygenated blood, also leads to an increased workload for the remaining single ventricle, as it is now responsible for pumping the blood through both the systemic and pulmonary circulation. The present device reduces this workload by altering the surgically created design of the TCPC. Improved fluid mechanics and reduced energy dissipation at the connection site translates into less work for the single ventricle and improved transport of deoxygenated blood to the lungs, which may in turn contribute to improved post-operative results and quality of life.
    Type: Application
    Filed: March 23, 2005
    Publication date: January 24, 2008
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Lakshmi Prasad Dasi, Kerem Pekkan, Diane De Julien De Zelicourt, Ajit P. Yoganathan, Dennis Dam Soerensen