Patents by Inventor Kerry N. Oliphant

Kerry N. Oliphant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11624373
    Abstract: Systems and methods for reducing the pressure of a first pressurized fluid, thereby reducing the temperature of the pressurized fluid, and utilization of the reduced-pressure and temperature fluid to cool a second fluid. Such an approach can enable a reduction in the size and weight of a hydraulic system, utilize waste energy in a system, and/or minimize electrical power requirements of a system, among other benefits.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: April 11, 2023
    Assignee: Concepts NREC, LLC
    Inventors: Kerry N. Oliphant, Francis A. Di Bella
  • Publication number: 20220220977
    Abstract: Systems and methods for reducing the pressure of a first pressurized fluid, thereby reducing the temperature of the pressurized fluid, and utilization of the reduced-pressure and temperature fluid to cool a second fluid. Such an approach can enable a reduction in the size and weight of a hydraulic system, utilize waste energy in a system, and/or minimize electrical power requirements of a system, among other benefits.
    Type: Application
    Filed: April 1, 2022
    Publication date: July 14, 2022
    Inventors: Kerry N. Oliphant, Francis A. Di Bella
  • Patent number: 11306738
    Abstract: Systems and methods for reducing the pressure of a first pressurized fluid, thereby reducing the temperature of the pressurized fluid, and utilization of the reduced-pressure and temperature fluid to cool a second fluid. Such an approach can enable a reduction in the size and weight of a hydraulic system, utilize waste energy in a system, and/or minimize electrical power requirements of a system, among other benefits.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: April 19, 2022
    Assignee: Concepts NREC, LLC
    Inventors: Kerry N. Oliphant, Francis A. Di Bella
  • Publication number: 20200277968
    Abstract: Systems and methods for reducing the pressure of a first pressurized fluid, thereby reducing the temperature of the pressurized fluid, and utilization of the reduced-pressure and temperature fluid to cool a second fluid. Such an approach can enable a reduction in the size and weight of a hydraulic system, utilize waste energy in a system, and/or minimize electrical power requirements of a system, among other benefits.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 3, 2020
    Inventors: Kerry N. Oliphant, Francis A. Di Bella
  • Patent number: 10590959
    Abstract: Systems and methods for reducing the pressure of a first pressurized fluid, thereby reducing the temperature of the pressurized fluid, and utilization of the reduced-pressure and temperature fluid to cool a second fluid. Such an approach can enable a reduction in the size and weight of a hydraulic system, utilize waste energy in a system, and/or minimize electrical power requirements of a system, among other benefits.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: March 17, 2020
    Assignee: Concepts NREC, LLC
    Inventors: Kerry N. Oliphant, Francis A. Di Bella
  • Patent number: 10526964
    Abstract: Hydrogen gas compression systems that each include a multistage centrifugal compressor in which each stage has an inlet-to-outlet pressure rise ratio of about 1.20 or greater. In one embodiment, the multistage compressor includes six high-speed centrifugal compressors driven at a speed of about 60,000 rpm. The compressor has an output of more than 200,000 kg/day at a pressure of more than 1,000 psig. The compressors for the compression stages are distributed on both sides of a common gearbox, which has gearing that allows axial thrusts from the compressors to be handled effectively. Each stage's compressor has a unique impeller, which is secured to a support shaft using a tension-rod-based attachment system. In another embodiment, the multistage compressor is driven by a combustion turbine and one or more intercoolers are provided between compression stages. Each intercooler is cooled by coolant from an absorption chiller utilizing exhaust gas from the combustion turbine.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: January 7, 2020
    Assignee: Concepts NREC, LLC
    Inventors: Frederick E. Becker, Francis A. DiBella, Alexander Gofer, Sharon E. Wight, Karl D. Wygant, Kerry N. Oliphant
  • Publication number: 20170102008
    Abstract: Systems and methods for reducing the pressure of a first pressurized fluid, thereby reducing the temperature of the pressurized fluid, and utilization of the reduced-pressure and temperature fluid to cool a second fluid. Such an approach can enable a reduction in the size and weight of a hydraulic system, utilize waste energy in a system, and/or minimize electrical power requirements of a system, among other benefits.
    Type: Application
    Filed: October 7, 2016
    Publication date: April 13, 2017
    Inventors: Kerry N. Oliphant, Francis A. Di Bella
  • Publication number: 20160222970
    Abstract: Hydrogen gas compression systems that each include a multistage centrifugal compressor in which each stage has an inlet-to-outlet pressure rise ratio of about 1.20 or greater. In one embodiment, the multistage compressor includes six high-speed centrifugal compressors driven at a speed of about 60,000 rpm. The compressor has an output of more than 200,000 kg/day at a pressure of more than 1,000 psig. The compressors for the compression stages are distributed on both sides of a common gearbox, which has gearing that allows axial thrusts from the compressors to be handled effectively. Each stage's compressor has a unique impeller, which is secured to a support shaft using a tension-rod-based attachment system. In another embodiment, the multistage compressor is driven by a combustion turbine and one or more intercoolers are provided between compression stages. Each intercooler is cooled by coolant from an absorption chiller utilizing exhaust gas from the combustion turbine.
    Type: Application
    Filed: April 8, 2016
    Publication date: August 4, 2016
    Inventors: Frederick E. Becker, Francis A. DiBella, Alexander Gofer, Sharon E. Wight, Karl D. Wygant, Kerry N. Oliphant
  • Patent number: 9316228
    Abstract: Hydrogen gas compression systems that each include a multistage centrifugal compressor in which each stage has an inlet-to-outlet pressure rise ratio of about 1.20 or greater. In one embodiment, the multistage compressor includes six high-speed centrifugal compressors driven at a speed of about 60,000 rpm. The compressor has an output of more than 200,000 kg/day at a pressure of more than 1,000 psig. The compressors for the compression stages are distributed on both sides of a common gearbox, which has gearing that allows axial thrusts from the compressors to be handled effectively. Each stage's compressor has a unique impeller, which is secured to a support shaft using a tension-rod-based attachment system. In another embodiment, the multistage compressor is driven by a combustion turbine and one or more intercoolers are provided between compression stages. Each intercooler is cooled by coolant from an absorption chiller utilizing exhaust gas from the combustion turbine.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: April 19, 2016
    Assignee: Concepts NREC, LLC
    Inventors: Frederick E. Becker, Jamin J. Bitter, Francis A. DiBella, Alexander Gofer, Robert J. Pelton, Sharon E. Wight, Karl D. Wygant, Kerry N. Oliphant
  • Patent number: 9163516
    Abstract: A fluid movement system that includes an impeller having a blade with a leading edge blade tip angle determined as a function of an increase in mass flow rate due to reinjection of flow from a flow stability device located proximate to the leading edge tip of the blade. In an exemplary method, the leading edge blade tip angle can be determined based on selecting a blade incidence level based on a mass flow gain versus flow coefficient curve. Blade leading edge tip angles determined in accordance with a method of the present invention are typically greater than blade leading edge tip angles determined using traditional methods. The greater blade leading edge tip angles can lead to more robust blades designs.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: October 20, 2015
    Assignee: Concepts ETI, Inc.
    Inventor: Kerry N. Oliphant
  • Patent number: 8616829
    Abstract: A turbine that allows for the conversion of the kinetic energy of waterway to mechanical power for use in an energy accepting apparatus is described. The turbine has complimentary components that improve the power efficiency of the turbine. The turbine may include a blade shroud and a plurality of blades that are connected to the blade shroud. On the external surface of the blade shroud, a drive mechanism and/or a brake mechanism may be disposed. An inlet nozzle and outlet diffuser may be used in combination with the turbine. The turbine may be useful in a number of settings, including, but not limited to, streams, rivers, dams, ocean currents, or tidal areas that have continuous or semi-continuous water flow rates and windy environments.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: December 31, 2013
    Assignee: Concepts ETI, Inc.
    Inventors: Frederick E. Becker, Kerry N. Oliphant, Andrew R. Provo
  • Patent number: 8371801
    Abstract: A system for installing and extracting a flowing water turbine below the surface of the water includes a flow inducer assembly for improving the conversation of the kinetic energy of a waterway to mechanical energy. The flow inducer assembly includes a nozzle that may be shaped as a cowling and a outlet diffuser. The system may be useful in a number of settings, including, but not limited to, streams, rivers, dams, ocean currents, or tidal areas that have continuous or semi-continuous water flow rates and windy environments.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: February 12, 2013
    Assignee: Hydro Green Energy, LLC
    Inventors: Frederick E. Becker, Kerry N. Oliphant, Andrew R. Provo, Tsukasa Yoshinaka
  • Publication number: 20120011857
    Abstract: Hydrogen gas compression systems that each include a multistage centrifugal compressor in which each stage has an inlet-to-outlet pressure rise ratio of about 1.20 or greater. In one embodiment, the multistage compressor includes six high-speed centrifugal compressors driven at a speed of about 60,000 rpm. The compressor has an output of more than 200,000 kg/day at a pressure of more than 1,000 psig. The compressors for the compression stages are distributed on both sides of a common gear-box, which has gearing that allows axial thrusts from the compressors to be handled effectively. Each stage's compressor has a unique impeller, which is secured to a support shaft using a tension-rod-based attachment system. In another embodiment, the multistage compressor is driven by a combustion turbine and one or more intercoolers are provided between compression stages. Each intercooler is cooled by coolant from an absorption chiller utilizing exhaust gas from the combustion turbine.
    Type: Application
    Filed: March 24, 2010
    Publication date: January 19, 2012
    Applicant: CONCEPTS ETI, INC.
    Inventors: Frederick E. Becker, Jamin J. Bitter, Francis A. DiBella, Alexander Gofer, Robert J. Pelton, Sharon E. Wight, Karl D. Wygant, Kerry N. Oliphant
  • Patent number: 8072089
    Abstract: A preferred embodiment includes a system for power generation through movement of fluid having a variety of configurations and implementations. One preferred embodiment includes a system for power generation through movement of fluid includes a power generating cell with a generally cylindrical housing a ring for rotating disposed in said housing, one or more impellers fixedly coupled to said ring, and a generator operably coupled to said ring for receiving energy from the one or more impellers in which fluid is disposed about one or more impellers for creating energy.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: December 6, 2011
    Inventors: Wayne F. Krouse, Frederick E. Becker, Kerry N. Oliphant, Andrew R. Provo
  • Publication number: 20100119362
    Abstract: A turbine that allows for the conversion of the kinetic energy of waterway to mechanical power for use in an energy accepting apparatus is described. The turbine has complimentary components that improve the power efficiency of the turbine. The turbine may include a blade shroud and a plurality of blades that are connected to the blade shroud. On the external surface of the blade shroud, a drive mechanism and/or a brake mechanism may be disposed. An inlet nozzle and outlet diffuser may be used in combination with the turbine. The turbine may be useful in a number of settings, including, but not limited to, streams, rivers, dams, ocean currents, or tidal areas that have continuous or semi-continuous water flow rates and windy environments.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 13, 2010
    Applicant: CONCEPTS ETI, INC.
    Inventors: Frederick E. Becker, Kerry N. Oliphant, Andrew R. Provo
  • Publication number: 20100119353
    Abstract: A system for installing and extracting a flowing water turbine below the surface of the water includes a flow inducer assembly for improving the conversation of the kinetic energy of a waterway to mechanical energy. The flow inducer assembly includes a nozzle that may be shaped as a cowling and a outlet diffuser. The system may be useful in a number of settings, including, but not limited to, streams, rivers, dams, ocean currents, or tidal areas that have continuous or semi-continuous water flow rates and windy environments.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 13, 2010
    Applicant: CONCEPTS ETI, INC.
    Inventors: Frederick E. Becker, Kerry N. Oliphant, Andrew R. Provo, Tsukasa Yoshinaka
  • Patent number: 6564865
    Abstract: A system for producing a mixed gas-oil stream which contains solid particulates wherein gas is to be separated and compressed downhole in a turbine-driven compressor before the gas is injected into a subterranean formation. The stream is passed through an upstream separator to separate out the particulates which pass through a first and second set of slots into first and second passages, both of which empty into a bypass through the turbine whereby the separated particulates do not contact the rotary vanes of the turbine thereby alleviating the erosive effects of the solids in the produced stream.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: May 20, 2003
    Assignee: Conocophillips Company
    Inventors: Jerry L. Brady, James L. Cawvey, John M. Klein, Mark D. Stevenson, Steven J. Svedeman, Steven P. Petullo, Kerry N. Oliphant