Patents by Inventor Kerstin HILD

Kerstin HILD has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240025003
    Abstract: A method of producing an optical element for a lithography apparatus, comprising the steps of: a) detecting a height profile of a surface of a crystal substrate of the optical element, and b) ascertaining, using the height profile detected, an installed orientation (?2, ?4, ?6) of the optical element in an optical system of the lithography apparatus in relation to a stress-induced birefringence on incidence of polarized radiation, where the installed orientation (?2, ?4, ?6) is an orientation in relation to a rotation of the optical element about a center axis of the optical element that runs through the surface.
    Type: Application
    Filed: July 18, 2023
    Publication date: January 25, 2024
    Inventors: Conrad Wolke, Volker Thonagel, Stefan Klinghammer, Kerstin Hild, Nils Lundt
  • Publication number: 20230142187
    Abstract: A projection exposure apparatus comprises a projection objective, and the projection objective comprises an optical device, wherein the optical device comprises an optical element having an optically effective surface and an electrostrictive actuator. The electrostrictive actuator is deformable by a control voltage being applied. The electrostrictive actuator is functionally connected to the optical element to influence the surface shape of the optically effective surface. A control device supplies the electrostrictive actuator with the control voltage. A measuring device is configured, at least at times while the electrostrictive actuator influences the optically effective surface of the optical element, to measure directly and/or to determine indirectly the temperature and/or a temperature change of the electrostrictive actuator and/or the surroundings thereof to take account of a temperature-dependent influence during driving of the electrostrictive actuator by the control device.
    Type: Application
    Filed: January 12, 2023
    Publication date: May 11, 2023
    Inventors: Johannes Lippert, Toralf Gruner, Kerstin Hild, Hans-Michael Stiepan, Thilo Pollak, Jeffrey Cavaco
  • Publication number: 20230122333
    Abstract: A mirror, e.g. for a microlithographic projection exposure apparatus, includes an optical effective surface, a mirror substrate, a reflection layer stack for reflecting electromagnetic radiation incident on the optical effective surface, at least one first electrode arrangement, at least one second electrode arrangement, and an actuator layer system situated between the first and the second electrode arrangements. The actuator layer system is arranged between the mirror substrate and the reflection layer stack, has a piezoelectric layer, and reacts to an electrical voltage applied between the first and the second electrode arrangements with a deformation response in a direction perpendicular to the optical effective surface. The deformation response varies locally by at least 20% in PV value for a predefined electrical voltage that is spatially constant across the piezoelectric layer.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Inventors: Kerstin HILD, Toralf GRUNER, Daniel GOLDE, Hans Michael STIEPAN, Vitaliy SHKLOVER
  • Publication number: 20230088791
    Abstract: A mirror including a substrate (110), a reflection layer system (120), and at least one continuous piezoelectric layer (130, . . . ) arranged between the substrate and the layer system. An electric field producing a locally variable deformation is applied to the piezoelectric layer via a first, layer-system-side electrode arrangement and a second, substrate-side electrode arrangement. At least one of the electrode arrangements is assigned a mediator layer (170) setting an at least regionally continuous profile of the electrical potential along the respective electrode arrangement. The electrode arrangement to which the mediator layer is assigned has a plurality of electrodes (160, . . . ), each of which is configured to receive an electrical voltage relative to the respective other electrode arrangement. In the region that couples two respectively adjacent electrodes, the mediator layer is subdivided into a plurality of regions (171, . . . ) that are electrically insulated from one another.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 23, 2023
    Inventors: Jan HORN, Mohammad AWAD, Kerstin HILD
  • Publication number: 20220206401
    Abstract: A mirror arrangement (30) includes: a substrate (31), which has a front side (31a) having a mirror face (32a) for reflecting radiation (5), and a rear side (31b) facing away from the front side (31a), as well as at least one actuator (27) arranged to generate deformations of the mirror face (32a). The at least one actuator (27) is secured on the rear side (31b) of the substrate (31), and the mirror arrangement (30) has a hydrogen barrier (38) which is configured to protect a hydrogen-sensitive material (M) on the rear side (31b) of the substrate (31), in particular on the at least one actuator (27), from the attack by hydrogen (37) from the surroundings (36) of the mirror arrangement (30). An associated optical arrangement, in particular an EUV lithography apparatus (1), incorporating such a mirror arrangement (30) is also disclosed.
    Type: Application
    Filed: March 3, 2022
    Publication date: June 30, 2022
    Inventors: Alexandra PAZIDIS, Kerstin HILD, Thilo POLLAK, Martin NOAH, Juergen NASER, Dirk KLEINHENZ
  • Patent number: 11366395
    Abstract: A mirror that has a mirror substrate (12), a reflection layer stack (21) reflecting electromagnetic radiation incident on the optical effective surface (11), and at least one piezoelectric layer (16) arranged between the mirror substrate and the reflection layer stack and to which an electric field for producing a locally variable deformation is applied by way of a first electrode arrangement and a second electrode arrangement situated on alternate sides of the piezoelectric layer. In one aspect, both the first and the second electrode arrangements have a plurality of electrodes (20a, 20b), to each of which an electrical voltage relative to the respective other electrode arrangement can be applied via leads (19a, 19b). Separate mediator layers (17a, 17b) set continuous electrical potential profiles along the respective electrode arrangement, and where said mediator layers differ from one another in their average electrical resistance by a factor of at least 1.5.
    Type: Grant
    Filed: November 8, 2020
    Date of Patent: June 21, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Kerstin Hild, Toralf Gruner, Vitaliy Shklover
  • Publication number: 20220187516
    Abstract: A mirror arrangement (30) includes: a substrate (31) with a front side (31a) having a mirror face (32a) reflecting radiation (5), and a rear side (31b) facing away from the front side and on which at least one actuator (27) generating deformations of the mirror face is arranged. A water vapor (36)-sorbing material (33, 42) is formed on the rear side (31b) and forms an adhesive layer (33) for securing the actuator. The layer extends into interspaces (35) between the actuators (27). A surface (33a, 42a) of the water vapor-sorbing material is covered at least partly by a coating (37) which forms a water vapor diffusion barrier.
    Type: Application
    Filed: March 3, 2022
    Publication date: June 16, 2022
    Inventors: Alexandra PAZIDIS, Kerstin HILD, Thilo POLLAK
  • Patent number: 11360393
    Abstract: A mirror having a mirror substrate (12, 32, 52), a reflection layer stack (21, 41, 61) reflecting electromagnetic radiation having an operating wavelength that is incident on the optical effective surface (11, 31, 51), and at least one piezoelectric layer (16, 36, 56), arranged between the substrate and the reflection layer stack and to which an electric field producing a locally variable deformation is applied. A first electrode arrangement (20, 40, 60) situated on the side of the piezoelectric layer faces the reflection layer stack, and a second electrode arrangement (14, 34, 54) is situated on the side of the piezoelectric layer facing the mirror substrate. Optionally, a bracing layer (98) is provided, which limits sinking of the piezoelectric layer (96) into the mirror substrate (92) when an electric field is applied, in comparison with an analogous construction lacking the bracing layer, thereby increasing the piezoelectric layer's effective deflection.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: June 14, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Ben Wylie-Van Eerd, Frederik Bijkerk, Kerstin Hild, Toralf Gruner, Stefan Schulte, Simone Weyler
  • Patent number: 11328831
    Abstract: Treating a reflective optical element (104) for the EUV wavelength range that has a reflective coating on a substrate. The reflective optical element in a holder (106) is irradiated with at least one radiation pulse of a radiation source (102) having a duration of between 1 ?s and 1 s. At least one radiation source (102) and the reflective optical element move relative to one another. Preferably, this is carried out directly after applying the reflective coating in a coating chamber (100). Reflective optical elements of this type are suitable in particular for use in EUV lithography or in EUV inspection of masks or wafers, for example.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: May 10, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Christian Grasse, Martin Hermann, Stephan Six, Joern Weber, Ralf Winter, Oliver Dier, Vitaliy Shklover, Kerstin Hild, Sebastian Strobel
  • Patent number: 11187990
    Abstract: A mirror for a microlithographic projection exposure apparatus, and a method for operating a deformable mirror. In one aspect, a mirror includes an optical effective surface (11), a mirror substrate (12), a reflection layer stack (21) for reflecting electromagnetic radiation incident on the optical effective surface, and at least one piezoelectric layer (16) arranged between the mirror substrate and the reflection layer stack and to which an electric field for producing a locally variable deformation is able to be applied by a first electrode arrangement situated on the side of the piezoelectric layer (16) facing the reflection layer stack, and by a second electrode arrangement situated on the side of the piezoelectric layer facing the mirror substrate. The piezoelectric layer has a plurality of columns spatially separated from one another by column boundaries, wherein a mean column diameter of the columns is in the range of 0.1 ?m to 50 ?m.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: November 30, 2021
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Johannes Lippert, Toralf Gruner, Kerstin Hild, Philip Lucke, Mohammadreza Nematollahi
  • Patent number: 11137687
    Abstract: An optical arrangement (1) for EUV radiation includes: at least one reflective optical element (16) having a main body (30) with a coating (31) that reflects EUV radiation (33). At least one shield (36) is fitted to at least one surface region (35) of the main body (30) and protects the at least one surface region (35) against an etching effect of a plasma (H+, H*) that surrounds the reflective optical element (16) during operation of the optical arrangement (1). A distance (A) between the shield (36) and the surface region (35) of the main body (30) is less than double the Debye length (?D), preferably less than the Debye length (?D), of the surrounding plasma (H+, H*).
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: October 5, 2021
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Bjoern Liebaug, Moritz Becker, Kerstin Hild, Joachim Hartjes, Simon Haas
  • Patent number: 11029515
    Abstract: An optical element for an optical system, in particular an optical system of a microlithographic projection exposure apparatus or mask inspection apparatus, and a method for correcting the wavefront effect of an optical element. The optical element has at least one correction layer (12, 22) and a manipulator that manipulates the layer stress in this correction layer such that a wavefront aberration present in the optical system is at least partially corrected by this manipulation. The manipulator has a radiation source for spatially resolved irradiation of the correction layer with electromagnetic radiation (5). This spatially resolved irradiation enables a plurality of spaced apart regions (12a, 12b, 12c, . . . ; 22a, 22b, 22c, . . . ) to be generated, equally modified in terms of their respective structures, in the correction layer.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: June 8, 2021
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Kerstin Hild, Toralf Gruner, Vitaliy Shklover
  • Publication number: 20210149310
    Abstract: A mirror for a microlithographic projection exposure apparatus, and a method for operating a deformable mirror. In one aspect, a mirror includes an optical effective surface (11), a mirror substrate (12), a reflection layer stack (21) for reflecting electromagnetic radiation incident on the optical effective surface, and at least one piezoelectric layer (16) arranged between the mirror substrate and the reflection layer stack and to which an electric field for producing a locally variable deformation is able to be applied by a first electrode arrangement situated on the side of the piezoelectric layer (16) facing the reflection layer stack, and by a second electrode arrangement situated on the side of the piezoelectric layer facing the mirror substrate. The piezoelectric layer has a plurality of columns spatially separated from one another by column boundaries, wherein a mean column diameter of the columns is in the range of 0.1 ?m to 50 ?m.
    Type: Application
    Filed: January 26, 2021
    Publication date: May 20, 2021
    Inventors: Johannes LIPPERT, Toralf GRUNER, Kerstin HILD, Philip LUCKE, Mohammadreza NEMATOLLAHI
  • Publication number: 20210055662
    Abstract: A mirror that has a mirror substrate (12), a reflection layer stack (21) reflecting electromagnetic radiation incident on the optical effective surface (11), and at least one piezoelectric layer (16) arranged between the mirror substrate and the reflection layer stack and to which an electric field for producing a locally variable deformation is applied by way of a first electrode arrangement and a second electrode arrangement situated on alternate sides of the piezoelectric layer. In one aspect, both the first and the second electrode arrangements have a plurality of electrodes (20a, 20b), to each of which an electrical voltage relative to the respective other electrode arrangement can be applied via leads (19a, 19b). Separate mediator layers (17a, 17b) set continuous electrical potential profiles along the respective electrode arrangement, and where said mediator layers differ from one another in their average electrical resistance by a factor of at least 1.5.
    Type: Application
    Filed: November 8, 2020
    Publication date: February 25, 2021
    Inventors: Kerstin HILD, Toralf GRUNER, Vitaliy SHKLOVER
  • Patent number: 10908509
    Abstract: A mirror, in particular for a microlithographic projection exposure apparatus, has an optical effective surface and includes a substrate (11, 61, 71, 81, 91), a reflection layer system (16, 66, 76, 86, 96) for reflecting electromagnetic radiation impinging on the optical effective surface (10a, 60a, 70a, 80a, 90a), an electrode arrangement (13, 63, 73, 83) composed of a first material having a first electrical conductivity, the electrode arrangement being provided on the substrate, and a mediator layer (12, 62, 72, 82, 92) composed of a second material having a second electrical conductivity. The ratio between the first electrical conductivity and the second electrical conductivity is at least 100. The mirror also includes at least one compensation layer (88) which at least partly compensates for the influence of a thermal expansion of the electrode arrangement (83) on the deformation of the optical effective surface (80a).
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: February 2, 2021
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Johannes Lippert, Toralf Gruner, Kerstin Hild
  • Publication number: 20200393673
    Abstract: An optical element for an optical system, in particular an optical system of a microlithographic projection exposure apparatus or mask inspection apparatus, and a method for correcting the wavefront effect of an optical element. The optical element has at least one correction layer (12, 22) and a manipulator that manipulates the layer stress in this correction layer such that a wavefront aberration present in the optical system is at least partially corrected by this manipulation. The manipulator has a radiation source for spatially resolved irradiation of the correction layer with electromagnetic radiation (5). This spatially resolved irradiation enables a plurality of spaced apart regions (12a, 12b, 12c, . . . ; 22a, 22b, 22c, . . . ) to be generated, equally modified in terms of their respective structures, in the correction layer.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: Kerstin HILD, Toralf GRUNER, Vitaliy SHKLOVER
  • Patent number: 10852643
    Abstract: An optical system for a lithography machine includes: a main mirror element and a manipulator device for positioning and/or orienting said main mirror element. The optical system also includes an optically active surface for reflecting radiation. The optical system further includes an actuator matrix positioned between the main mirror element and the optically active surface. The actuator matrix is configured to deform the optically active surface to influence the reflective properties of the optically active surface. A gap is present between the actuator matrix and a front side of the main mirror element so that the actuator matrix is spaced apart from the main mirror element.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: December 1, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Dirk Juergens, Kerstin Hild, Bernd Geh
  • Patent number: 10684466
    Abstract: Mirror elements (2a, 2b) include a substrate (4a, 4b) and a multilayer arrangement (5a, 5b). The multilayer arrangement includes a reflective layer system (6a, 6b) having a radiation entrance surface (7a, 7b) and a piezoelectric layer (8a, 8b) arranged between the radiation entrance surface and the substrate. Each mirror element includes an electrode arrangement (9a, 9b, 9c) associated with the piezoelectric layer. A layer thickness (tp) of the piezoelectric layer is controlled by the electric field generated. An interconnection arrangement (10) electrically interconnects adjacent electrodes of adjacent electrode arrangements. According to one formulation, the interconnection arrangement generates an electric field in a gap region (11) between the adjacent electrodes.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: June 16, 2020
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Wouter Bernardus Johannes Hakvoort, Richard Petrus Hogervorst, Petrus Theodorus Rutgers, Kerstin Hild, Toralf Gruner
  • Publication number: 20200174379
    Abstract: A mirror having a mirror substrate (12, 32, 52), a reflection layer stack (21, 41, 61) reflecting electromagnetic radiation having an operating wavelength that is incident on the optical effective surface (11, 31, 51), and at least one piezoelectric layer (16, 36, 56), arranged between the substrate and the reflection layer stack and to which an electric field producing a locally variable deformation is applied. A first electrode arrangement (20, 40, 60) situated on the side of the piezo-electric layer faces the reflection layer stack, and a second electrode arrangement (14, 34, 54) is situated on the side of the piezoelectric layer facing the mirror substrate. Optionally, a bracing layer (98) is provided, which limits sinking of the piezoelectric layer (96) into the mirror substrate (92) when an electric field is applied, in comparison with an analogous construction lacking the bracing layer, thereby increasing the piezoelectric layer's effective deflection.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 4, 2020
    Inventors: Ben WYLIE-VAN EERD, Frederik BIJKERK, Kerstin HILD, Toralf GRUNER, Stefan SCHULTE, Simone WEYLER
  • Publication number: 20200166847
    Abstract: An optical arrangement (1) for EUV radiation includes: at least one reflective optical element (16) having a main body (30) with a coating (31) that reflects EUV radiation (33). At least one shield (36) is fitted to at least one surface region (35) of the main body (30) and protects the at least one surface region (35) against an etching effect of a plasma (H+, H*) that surrounds the reflective optical element (16) during operation of the optical arrangement (1). A distance (A) between the shield (36) and the surface region (35) of the main body (30) is less than double the Debye length (?D), preferably less than the Debye length (?D), of the surrounding plasma (H+, H*).
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: Bjoern LIEBAUG, Moritz BECKER, Kerstin HILD, Joachim HARTJES, Simon HAAS