Patents by Inventor Keunho Ahn

Keunho Ahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180272294
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Application
    Filed: March 5, 2018
    Publication date: September 27, 2018
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20180272299
    Abstract: The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalising two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reactions between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalised into the microcapsules.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 27, 2018
    Applicants: President and Fellows of Harvard College, Medical Research Council
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20180208983
    Abstract: Method and composition for identifying cognate nucleotides in a Sequencing By Binding™ procedure, wherein one or more labeled nucleotides are detected in ternary complexes but never incorporated. Labeled nucleotides can be incorporable nucleotides that contact preformed blocked primed template nucleic acids. Alternatively, labeled nucleotides are labeled non-incorporable nucleotides. Labeled nucleotides, including labeled non-incorporable nucleotides, can be detected in ternary complexes in the same reaction mixture that incorporates a reversible terminator nucleotide to create a blocked primed template nucleic acid. Detection of ternary complexes can take place in the presence of a catalytic metal ion.
    Type: Application
    Filed: January 17, 2018
    Publication date: July 26, 2018
    Applicant: Omniome, Inc.
    Inventors: Corey M. DAMBACHER, Joseph ROKICKI, Keunho AHN, Brittany Ann ROHRMAN, Michael NGUYEN, Kandaswamy VIJAYAN
  • Publication number: 20180117585
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Application
    Filed: December 1, 2017
    Publication date: May 3, 2018
    Inventors: David A. Weitz, Darren Roy Link, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Patent number: 9925504
    Abstract: The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalizing two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reactions between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalized into the microcapsules.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: March 27, 2018
    Assignees: President and Fellows of Harvard College, Medical Research Council
    Inventors: Andrew Griffiths, David Weitz, Keunho Ahn, Darren Link, Jerome Bibette
  • Patent number: 9925501
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: March 27, 2018
    Assignees: Medical Research Council, President and Fellows of Harvard College
    Inventors: Andrew David Griffiths, David A. Weitz, Darren R. Link, Keunho Ahn, Jerome Bibette
  • Patent number: 9919277
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: March 20, 2018
    Assignees: Medical Research Council, President and Fellows of Harvard College
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Patent number: 9878325
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 30, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Darren Roy Link, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Publication number: 20170361318
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Application
    Filed: September 5, 2017
    Publication date: December 21, 2017
    Inventors: David A. Weitz, Darren Roy Link, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Patent number: 9839890
    Abstract: The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalising two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reactions between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control, The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalised into the microcapsules.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: December 12, 2017
    Assignees: National Science Foundation, Medical Research Council, President and Fellows of Harvard College
    Inventors: Andrew Griffiths, David Weitz, Darren Link, Keunho Ahn, Jerome Bibette
  • Patent number: 9789482
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets, according to another aspect of the invention, for example, through charge and/or dipole interactions. Another aspect of the invention provides the ability to determine droplets, or a component thereof, for example, using fluorescence and/or other optical techniques (e.g., microscopy), or electric sensing techniques such as dielectric sensing.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: October 17, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Darren Roy Link, David A. Weitz, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Publication number: 20170282133
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Application
    Filed: May 5, 2017
    Publication date: October 5, 2017
    Inventors: Andrew David Griffiths, David A. Weitz, Darren R. Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20170102381
    Abstract: The invention describes a method for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, comprising the steps of: a) compartmentalising the compounds into microcapsules together with the target, such that only a subset of the repertoire is represented in multiple copies in any one microcapsule; and b) identifying the compound which binds to or modulates the activity of the target; wherein at least one step is performed under microfluidic control. The invention enables the screening of large repertoires of molecules which can serve as leads for drug development.
    Type: Application
    Filed: October 21, 2016
    Publication date: April 13, 2017
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Patent number: 9498759
    Abstract: The invention describes a method for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, comprising the steps of: a) compartmentalizing the compounds into microcapsules together with the target, such that only a subset of the repertoire is represented in multiple copies in any one microcapsule; and b) identifying the compound which binds to or modulates the activity of the target; wherein at least one step is performed under microfluidic control. The invention enables the screening of large repertoires of molecules which can serve as leads for drug development.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: November 22, 2016
    Assignees: President and Fellows of Harvard College, Medical Research Council
    Inventors: Andrew Griffiths, David Weitz, Keunho Ahn, Darren R. Link, Jerome Bibette
  • Publication number: 20160186256
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 30, 2016
    Inventors: Andrew David Griffiths, David A. Weitz, Darren R. Link, Keunho Ahn, Jerome Bibette
  • Patent number: 9186643
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalizing genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: November 17, 2015
    Assignees: Medical Research Council, President and Fellows of Harvard College
    Inventors: Andrew David Griffiths, David A. Weitz, Darren R. Link, Keunho Ahn, Jerome Bibette
  • Patent number: 9029083
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Grant
    Filed: October 10, 2005
    Date of Patent: May 12, 2015
    Assignees: Medical Research Council, President and Fellows of Harvard College
    Inventors: Andrew David Griffiths, David Weitz, Darren Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20150024476
    Abstract: Apparatus and Methods are provided for a microfabricated fluorescence activated cell sorter based on a switch for rapid, active control of cell routing through a microfluidic channel network. This sorter enables low-stress, highly efficient sorting of populations of small numbers of cells (i.e., 1000-100,000 cells). The invention includes packaging of the microfluidic channel network in a self-contained plastic cartridge that enables microfluidic channel network to macro-scale instrument interconnect, in a sterile, disposable format. Optical and/or fluidic switching forces are used alone or in combination to effect switching.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 22, 2015
    Inventors: William F. Butler, Haichuan Zhang, Philippe Marchand, Keunho Ahn, Yi Zhang, John Francis, Benjamin Lai, Eugene Tu
  • Publication number: 20140371083
    Abstract: Systems, apparatus and methods are provided for biochemical analysis of a sample (e.g., a cell or nucleic acids). Samples are analyzed for molecular information and remain accessible for subsequent analysis or testing. The systems, apparatus and methods and systems provided are useful for performing quantitative and highly parallel biochemical reactions on biological samples in a high-throughput manner.
    Type: Application
    Filed: July 13, 2012
    Publication date: December 18, 2014
    Applicant: CELULA, INC.
    Inventors: Keunho Ahn, Benjamin Lai, Andree J. Pyfer, Yi Zhang, Haichuan Zhang
  • Patent number: 8871444
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalizing genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: October 28, 2014
    Assignees: Medical Research Council, President and Fellows of Harvard College
    Inventors: Andrew David Griffiths, David A. Weitz, Darren R. Link, Keunho Ahn, Jerome Bibette