Patents by Inventor Kevin A. McCullough

Kevin A. McCullough has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030236335
    Abstract: A thermally-conductive plastic substrate for supporting electronic circuits is provided. The substrate has a relatively low dielectric constant and good mechanical strength. The substrate is made from a polymer composition comprising a base polymer matrix and a thermally-conductive, electrically-insulating material. The composition can comprise polyphenylene sulfide and boron nitride. The composition can further comprise a reinforcing material such as glass. The invention also encompasses methods for making such substrates.
    Type: Application
    Filed: May 12, 2003
    Publication date: December 25, 2003
    Inventors: James D. Miller, E. Mikhail Sagal, Kevin A. McCullough
  • Publication number: 20030220432
    Abstract: A thermoplastic, thermally-conductive composition is provided. The composition comprises a base thermoplastic elastomer matrix, thermally-conductive filler material, and temperature-activated phase change material. The composition can be used to make shaped, thermally-conductive articles. The articles can be used as thermal interfaces for dissipating heat from heat-generating devices such as electronic parts. The articles can have good electrical conductivity.
    Type: Application
    Filed: April 8, 2003
    Publication date: November 27, 2003
    Inventors: James Miller, Kevin A. McCullough, E. Mikhail Sagal, Jeffrey Panek
  • Patent number: 6649108
    Abstract: A method of manufacturing a net-shape moldable U-shaped heat sink assembly includes injection molding a thermally conductive polymer composite material. The method includes forming a heat sink assembly base member with a number of integrated fins members thereon. A right upstanding wall extends from a first side of the base member and a left upstanding wall extends from a second side of the base member to form a substantially U-shaped heat sink assembly. To enhance thermal conductivity, fins members may be integrally formed into the base member, right wall and/or left wall during the molding of the heat sink assembly. Also, a flexible metallic substrate or hinges may be embedded within the U-shaped heat sink assembly to permit positioning of the right wall and left wall relative to the base member for custom configuration of the heat sink assembly.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: November 18, 2003
    Assignee: Cool Shield, Inc.
    Inventors: Kevin A. McCullough, E. Mikhail Sagal
  • Publication number: 20030199082
    Abstract: A thermally-conductive biological assay tray is provided. The trays are made from a polymer composition comprising a base polymer matrix and a thermally-conductive material. The trays can be used for fluorescent immunoassays. The fluorescence level of the polymer composition is sufficiently low such that it does not interfere with the fluorescent immunoassay process. The invention also includes methods for making the bioassay trays.
    Type: Application
    Filed: April 8, 2003
    Publication date: October 23, 2003
    Inventors: James Miller, E. Mikhail Sagal, Kevin McCullough
  • Patent number: 6635959
    Abstract: The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The present invention provides a thermal interface that is bonded to the surface of the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: October 21, 2003
    Assignee: Cool Shield, Inc.
    Inventor: Kevin A. McCullough
  • Patent number: 6620497
    Abstract: A thermally conductive and electrically insulative polymer composition and a method for creating the same is provided. Thermally conductive filler material is coated with a thermally conductive and electrically insulative coating material and mixed with a base polymer matrix. The mixture is molded into the desired shape. The electrically insulative coating material prevents the transfer of electricity through the filler material thus resulting in an electrically insulative composition.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: September 16, 2003
    Assignee: Cool Options, Inc.
    Inventors: Lyle James Smith, E. Mikhail Sagal, James D. Miller, Kevin McCullough
  • Publication number: 20030139510
    Abstract: A polymer composition having high thermal conductivity and dielectric strength is provided. The polymer composition comprises a base polymer matrix and a thermally-conductive, electrically-insulating material. A reinforcing material such as glass can be added to the composition. The polymer composition can be molded into packaging assemblies for electronic devices such as capacitors, transistors, and resistors.
    Type: Application
    Filed: November 13, 2002
    Publication date: July 24, 2003
    Inventors: E. Mikhail Sagal, Kevin McCullough, James D. Miller
  • Patent number: 6585039
    Abstract: The present invention discloses a heat pipe construction that includes a heat pipe with phase change media therein with a conductive composition molded about the heat pipe. The thermally conductive composition absorbs or reflects electro magnetic interference waves and prevents their transmission into and through the heat pipe to the electronic components being cooled by the heat pipe.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: July 1, 2003
    Assignee: Cool Options, Inc.
    Inventors: E. Mikhail Sagal, Kevin A. McCullough, James D. Miller
  • Publication number: 20030102118
    Abstract: The present invention discloses a heat pipe construction that includes a heat pipe with phase change media therein with a conductive composition molded about the heat pipe. The thermally conductive composition absorbs or reflects electro magnetic interference waves and prevents their transmission into and through the heat pipe to the electronic components being cooled by the heat pipe.
    Type: Application
    Filed: January 31, 2001
    Publication date: June 5, 2003
    Inventors: E. Mikhail Sagal, Kevin A. McCullough, James D. Miller
  • Patent number: 6557859
    Abstract: A net-shape molded elastomeric gasket for dissipating heat and providing electro-magnetic interference (EMI) shielding for an electronic device is formed by loading a base elastomeric matrix material with thermally conductive filler and EMI reflective metallic filler and injecting the mixture into a mold cavity. The gasket of the present invention provides superior sealing between the case sections of an electronic device by shielding the device from EMI infiltration along the seam between the sections. In addition, the gasket of the present invention is in thermal communication with the case sections of the electronic device to provide thermal transfer and dissipation between the separate parts of the device.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: May 6, 2003
    Assignee: Cool Options, Inc.
    Inventors: Kevin A. McCullough, James D. Miller, Mikhail Sagal
  • Patent number: 6555486
    Abstract: The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The present invention provides a thermal interface that is bonded to the surface of the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: April 29, 2003
    Assignee: Cool Shield, Inc.
    Inventor: Kevin A. McCullough
  • Patent number: 6547001
    Abstract: A heat sink assembly for removing heat from an object having an outer surface includes a main body with an object receiving seat. A pair of flexible securing tabs are connected to the free edge of the open end of the main body which emanate into the open end of the main body. A heat dissipation members emanate from the outer surface of the main body to assist in dissipating the heat received by the main body from the heat generating object. The main body, the pair of flexible securing tabs and heat dissipating members are integrally formed with one another of a thermally conductive elastic or elastomeric material. An object to be cooled is inserted into the object receiving seat of the main body and retained in the seat and in communication with the inner surfaces of the main body by the pair of flexible securing tabs.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: April 15, 2003
    Assignee: Cool Shield, Inc.
    Inventors: Kevin A. McCullough, E. Mikhail Sagal, James D. Miller
  • Publication number: 20030067055
    Abstract: The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The present invention provides a thermal interface that is bonded to the surface of the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted.
    Type: Application
    Filed: November 4, 2002
    Publication date: April 10, 2003
    Inventor: Kevin A. McCullough
  • Patent number: 6543524
    Abstract: A net-shape molded heat transfer component is provided which includes a thermally conductive core and a metallic coating for reflection of electromagnetic interference and radio frequency waves. The heat transfer component is formed by net-shape molding a core body from a thermally conductive composition, such as a polymer composition, and applying a metallic coating. The molded heat transfer part is freely convecting through the part, which makes it more efficient and has an optimal thermal configuration. Additionally, the part is shielded from electromagnetic interference and radio frequency waves, thus preventing the transfer of same into the circuitry housed by the part. In addition, the coating also seals the conductive polymer core against moisture infiltration, making the part well suited for telecommunications applications in potentially harsh environments.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: April 8, 2003
    Assignee: Cool Options, Inc.
    Inventors: Kevin A. McCullough, E. Mikhail Sagal, James D. Miller
  • Patent number: 6540948
    Abstract: A method of overmolding a heat pipe includes providing an injection mold apparatus having a cavity, an input gate, a bleed off overflow gate in communication with the cavity and a tubular heat pipe charged with phase change media which is capable of being collapsed by imparting an external collapsing pressure. The tubular heat pipe is placed into the cavity in the injection mold apparatus. A net shape moldable thermally conductive material is introduced into the cavity and around the tubular pipe. The bleed off overflow gate is set to open at a predetermined pressure which less than the external collapsing pressure which would damage the heat pipe to be overmolded. Pressure is relieved in the cavity of the mold apparatus through the bleed off overflow gate when pressure in the bleed off overflow gate reaches the predetermined pressure. As a result, delicate heat pipes can be overmolded in an injection mold apparatus without damage to the heat pipe during the molding process.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: April 1, 2003
    Assignee: Cool Options, Inc.
    Inventor: Kevin A. McCullough
  • Publication number: 20030056938
    Abstract: A net-shape molded heat sink is provided which includes a thermally conductive main body and a number of thermally conductive fins integrally connected to and emanating from the main body. The heat sink is formed by overmolding a carbon-carbon matrix core plate with a thermally conductive polymer composition that is filled with thermally conductive filler material. The molded heat sink is freely convecting through the part which makes it more efficient and has an optimal thermal configuration.
    Type: Application
    Filed: November 5, 2002
    Publication date: March 27, 2003
    Inventor: Kevin A. McCullough
  • Publication number: 20030057547
    Abstract: The present invention provides a novel visible light curable composition for forming a thermally conductive interface and a method of using the same. The composition is used to promote the transfer of heat from a source of heat such as an electronic device to a heat dissipation device such as a heat sink. The composition includes an elastomeric base matrix containing a light curable catalyst, loaded with a thermally conductive filler material such as boron nitride grains or ceramic filler. After the compound is prepared, it is screen or stencil printed onto the desired surface and cured by exposure to visible light. The present invention provides a thermal interface that is bonded to the surface of the desired surface and has sufficient compressibility to allow it to overcome the voids in the mating surface to which the assembly is mounted.
    Type: Application
    Filed: November 4, 2002
    Publication date: March 27, 2003
    Inventor: Kevin A. McCullough
  • Publication number: 20030043586
    Abstract: A thermally conductive lamp reflector is provided that dissipates heat from a light source within the reflector. The reflector assembly includes a shell having a metallized layer on its surface. The shell is made from a composition including about 30% to about 80% by volume of a base polymer matrix and about 20% to about 70% by volume of a thermally conductive filler material. The reflector has a thermal conductivity of greater than 3 W/m° K and preferably greater than 22 W/m° K. The reflectors can be used in automotive headlamps, flashlights, and other lighting fixtures. A method of forming the lamp reflector is also provided.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 6, 2003
    Inventors: E. Mikhail Sagal, Kevin A. McCullough, James Miller
  • Publication number: 20030041442
    Abstract: The present invention discloses a method of providing an integral thermal interface on an interface surface of a heat dissipation device, such as a heat sink. In accordance with the present invention, the phase change material is applied directly onto the interface surface of the heat sink to form an integral interface layer directly on the heat sink during the manufacturing process. This process includes the steps of providing a heat dissipating device having an interface surface, liquefying the phase change material at a controlled temperature so as to decrease the material viscosity to a flowable form, applying the liquefied phase change material directly onto the mating surface of the heat dissipating device either by directly dispensing the material, screen printing or stencil printing and cooling the material causing it to cure on the surface of the heat dissipating device.
    Type: Application
    Filed: August 20, 2002
    Publication date: March 6, 2003
    Inventor: Kevin A. McCullough
  • Publication number: 20030044631
    Abstract: The present invention relates to thermally conductive, elastomeric pads and methods for manufacturing such pads. The methods involve injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive filler material. The resultant pads have heat transfer properties and can be used as a thermal interface to protect heat-generating electronic devices.
    Type: Application
    Filed: August 22, 2002
    Publication date: March 6, 2003
    Inventors: E. Mikhail Sagal, Kevin A. McCullough, James D. Miller