Patents by Inventor Kevin Fairbairn

Kevin Fairbairn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6517913
    Abstract: An apparatus for converting PFC gases exhausted from semiconductor processing equipment to less harmful, non-PFC gases. One embodiment of the apparatus includes a silicon filter and a plasma generation system. The plasma generation system forms a plasma from the effluent PFC gases. Constituents from the plasma react with silicon and/or oxygen in the filter and convert the effluent PFC gases to less harmful, non-PFC gaseous products and byproducts. Another embodiment includes a plasma generation system and a particle trapping and collection system. The particle trapping and collection system traps silicon containing residue from deposition processes that produces such residue, and the plasma generation system forms a plasma from the effluent PFC gases. Constituents from the plasma react with the collected residue to convert the effluent PFC gases to less harmful, non-PFC gaseous products and byproducts.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: February 11, 2003
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Sebastien Raoux, Judy H. Huang, William N. Taylor, Jr., Mark Fodor, Kevin Fairbairn
  • Patent number: 6486444
    Abstract: The present invention generally provides a vacuum system having a small-volume load-lock chamber for supporting a substrate set of only two rows of substrates, which provides for quick evacuation and venting of the load-lock chamber to provide a continuous feed load-lock chamber. More particularly, the present invention provides a transfer chamber; one or more processing chambers connected to the transfer chamber; a substrate handling robot disposed in the transfer chamber; and at least one load-lock chamber connected to the transfer chamber, and having one or more substrate support members for supporting one or more stacks of only two substrates per stack. Another aspect of the invention provides a staging, or storage rack associated with or integrated with the load-lock chamber. More particularly, the staging, or storage rack may be located outside the transfer chamber and accessible by a staging robot serving the load-lock chamber.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: November 26, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Fairbairn, Howard E. Grunes, Christopher Lane, Kelly A. Colborne
  • Patent number: 6364995
    Abstract: A non-conductive dome-shaped portion having a plurality of different radii as a dielectric inductive coupling wall of a reactor chamber. The non-conductive dome-shaped portion having a plurality of different radii being adapted to be positioned in close underlying relationship to a coil antenna and transmissive of RF energy inductively coupled into the chamber from the coil.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: April 2, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Fairbairn, Romuald Nowak
  • Patent number: 6361707
    Abstract: An apparatus and methods for an upgraded CVD system that provides a plasma for efficiently cleaning a chamber, according to a specific embodiment. Etching or depositing a layer onto a substrate also may be achieved using the upgraded CVD system of the present invention. In a specific embodiment, the present invention provides an easily removable, conveniently handled, and relatively inexpensive microwave plasma source as a retrofit for or a removable addition to existing CVD apparatus. In a preferred embodiment, the remote microwave plasma source efficiently provides a plasma without need for liquid-cooling the plasma applicator tube. In another embodiment, the present invention provides an improved CVD apparatus or retrofit of existing CVD apparatus capable of producing a plasma with the ability to efficiently clean the chamber when needed.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: March 26, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Tsutomu Tanaka, Mukul Kelkar, Kevin Fairbairn, Hari Ponnekanti, David Cheung
  • Patent number: 6358573
    Abstract: A substrate processing system that includes a ceramic substrate holder having an RF electrode embedded within the substrate holder and a gas inlet manifold spaced apart from the substrate holder. The gas inlet manifold supplies one or more process gases through multiple conical holes to a reaction zone of a substrate processing chamber within the processing system and also acts as a second RF electrode. Each conical hole has an outlet that opens into the reaction zone and an inlet spaced apart from the outlet that is smaller in diameter than said outlet. A mixed frequency RF power supply is connected to the substrate processing system with a high frequency RF power source connected to the gas inlet manifold electrode and a low frequency RF power source connected to the substrate holder electrode. An RF filter and matching network decouples the high frequency waveform from the low frequency waveform.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: March 19, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Sébastien Raoux, Mandar Mudholkar, William N. Taylor, Mark Fodor, Judy Huang, David Silvetti, David Cheung, Kevin Fairbairn
  • Patent number: 6354241
    Abstract: An apparatus and method for preventing particulate matter and residue build-up within a vacuum exhaust line of a semiconductor-processing device. The apparatus includes a vessel chamber having an inlet, an outlet and a fluid conduit between the two that fluidly couples the outlet with the inlet. The fluid conduit includes first and second collection sections. The first collection section includes a first plurality of electrodes aligned parallel to a first plane and the second collection section includes a second plurality of electrodes aligned parallel to a second plane that is substantially perpendicular to the first plane. The electrodes are connected to a voltage differential to form an electrostatic particle collector that traps electrically charged particles and particulate matter flowing through the fluid conduit. Particles are collected on the electrodes within the fluid conduit during substrate processing operations such as CVD deposition steps.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: March 12, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Tsutomu Tanaka, Chau Nguyen, Hari Ponnekanti, Kevin Fairbairn, Sébastien Raoux, Mark Fodor
  • Patent number: 6230652
    Abstract: An apparatus and methods for an upgraded CVD system that provides a plasma for efficiently cleaning a chamber, according to a specific embodiment. Etching or depositing a layer onto a substrate also may be achieved using the upgraded CVD system of the present invention. In a specific embodiment, the present invention provides an easily removable, conveniently handled, and relatively inexpensive microwave plasma source as a retrofit for or a removable addition to existing CVD apparatus. In a preferred embodiment, the remote microwave plasma source efficiently provides a plasma without need for liquid-cooling the plasma applicator tube. In another embodiment, the present invention provides an improved CVD apparatus or retrofit of existing CVD apparatus capable of producing a plasma with the ability to efficiently clean the chamber when needed.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: May 15, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Tsutomu Tanaka, Mukul Kelkar, Kevin Fairbairn, Hari Ponnekanti, David Cheung
  • Patent number: 6220201
    Abstract: The invention is embodied in a plasma reactor having a vacuum chamber with a cylindrical side portion and a ceiling at a certain height above the top of the cylindrical side portion, a wafer-holding pedestal near the bottom of the vacuum chamber, gas injection ports near the cylindrical side portion and a vacuum pump, the reactor including a generally planar disk-shaped conductive ceiling electrode adjacent the ceiling, a helical coil antenna having a bottom winding near the top of the cylindrical side portion and a top winding generally corresponding to the second diameter near the planar disk-shaped conductive ceiling electrode, the helical coil antenna substantially spanning the height between the top of the cylindrical side portion and the ceiling, and a switch for individually connecting each one of the coil antenna, the ceiling electrode and the wafer pedestal to one of (a) a respective RF power source or (b) ground or (c) a floating potential (i.e., unconnected to any potential source).
    Type: Grant
    Filed: July 7, 1998
    Date of Patent: April 24, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Romuald Nowak, Kevin Fairbairn, Fred C. Redeker
  • Patent number: 6187072
    Abstract: An apparatus for converting PFC gases exhausted from semiconductor processing equipment to less harmful, non-PFC gases. One embodiment of the apparatus includes a silicon filter and a plasma generation system. The plasma generation system forms a plasma from the effluent PFC gases. Constituents from the plasma react with silicon and/or oxygen in the filter and convert the effluent PFC gases to less harmful, non-PFC gaseous products and byproducts. Another embodiment includes a plasma generation system and a particle trapping and collection system. The particle trapping and collection system traps silicon containing residue from deposition processes that produces such residue, and the plasma generation system forms a plasma from the effluent PFC gases. Constituents from the plasma react with the collected residue to convert the effluent PFC gases to less harmful, non-PFC gaseous products and byproducts.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: February 13, 2001
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Sebastien Raoux, Judy H. Huang, William N. Taylor, Jr., Mark Fodor, Kevin Fairbairn
  • Patent number: 6176667
    Abstract: A multideck wafer processing system is described for the treatment of semiconductor wafers. The system includes at least two process chambers stacked one above the other to provide for higher wafer throughput per unit area of cleanroom space. The stacked process chambers enable sharing of pressurization, gas, electrical, and control support services for the processing chambers.
    Type: Grant
    Filed: April 30, 1996
    Date of Patent: January 23, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Fairbairn, Ashok Sinha
  • Patent number: 6163007
    Abstract: Apparatus for dissociating cleaning gas such as NF.sub.3 for use in semiconductor manufacturing includes a housing enclosing a microwave resonator to which microwave energy is applied, a plasma tube within the housing and within which cleaning gas flows and is dissociated by the microwave energy. The plasma tube has two ends into and out of which the cleaning gas flows. A first and a second structural assembly thermally protects and seals each end of the plasma tube against atmospheric leaks. Each structural assembly has a metal collar and a sealing O-ring fitting tightly around a respective end of the plasma tube. Each metal collar includes a thin layer of elastomeric material of high thermal conductivity for conducting heat through the collar away from the end of the plasma tube thereby protecting the O-ring from heat damage. This permits the apparatus to operate more efficiently. A fan forces ambient air over the apparatus.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: December 19, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Tsutomu Tanaka, Thomas Nowak, Chau Nguyen, Hari Ponnekanti, Kevin Fairbairn
  • Patent number: 6152070
    Abstract: The present invention provides an apparatus for vacuum processing generally comprising an enclosure having a plurality of isolated chambers formed therein, a gas distribution assembly disposed in each processing chamber, a gas source connected to the plurality of isolated chambers, and a power supply connected to each gas distribution assembly.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: November 28, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Fairbairn, Jessica Barzilai, Hari K. Ponnekanti, W. N. (Nick) Taylor
  • Patent number: 6098568
    Abstract: A substrate processing system that includes a ceramic substrate holder having an RF electrode embedded within the substrate holder and a gas inlet manifold spaced apart from the substrate holder. The gas inlet manifold supplies one or more process gases through multiple conical holes to a reaction zone of a substrate processing chamber within the processing system and also acts as a second RF electrode. Each conical hole has an outlet that opens into the reaction zone and an inlet spaced apart from the outlet that is smaller in diameter than said outlet. A mixed frequency RF power supply is connected to the substrate processing system with a high frequency RF power source connected to the gas inlet manifold electrode and a low frequency RF power source connected to the substrate holder electrode. An RF filter and matching network decouples the high frequency waveform from the low frequency waveform.
    Type: Grant
    Filed: December 1, 1997
    Date of Patent: August 8, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Sebastien Raoux, Mandar Mudholkar, William N. Taylor, Mark Fodor, Judy Huang, David Silvetti, David Cheung, Kevin Fairbairn
  • Patent number: 6082950
    Abstract: A front end staging method and apparatus is provided to introduce and remove a set of wafers from a vacuum processing system. The system generally comprises a support platform, one or more wafer cassette turntables disposed on the platform, a wafer handler disposed adjacent the turntables, a wafer center finding device and a filter disposed to control particles in the vicinity of the wafers. The wafer cassette turntables are rotatably mounted to the support in the preferred embodiment. The processing system may also include one or more processing chambers, where each processing chamber defines a plurality of isolated processing regions therein. The wafer center finding device may include an optical sensor system including optimal emitters aligned with optical sensors.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: July 4, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Allen Altwood, Kelly Colborne, Kevin Fairbairn, Christopher Lane, Hari K. Ponnekanti, Satish Sundar
  • Patent number: 6077157
    Abstract: A method and apparatus for exhausting gases out of multiple processing regions is provided and generally comprises first and second pumping channels disposed in first and second processing regions and connected to a pump via a common exhaust port.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: June 20, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Fairbairn, Hari K. Ponnekanti
  • Patent number: 6045618
    Abstract: An apparatus for minimizing deposition in an exhaust line of a substrate processing chamber. The apparatus includes first and second members having opposing surfaces that define a fluid conduit between them. The fluid conduit includes an inlet, an outlet and a collection chamber between the inlet and the outlet. The apparatus is connected at its inlet to receive the exhaust of the substrate processing chamber, and the collection chamber is structured and arranged to collect particulate matter flowing through the fluid conduit and to inhibit egress of the particulate matter from the collection chamber. A microwave plasma generation system supplies microwave energy within the fluid conduit to form a plasma from etchant gases within the fluid conduit. Constituents from the plasma react with the particulate matter collected in the collection chamber to form gaseous products that may be pumped out of the fluid conduit.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: April 4, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Sebastien Raoux, Tsutomu Tanaka, Mukul Kelkar, Hari Ponnekanti, Kevin Fairbairn, David Cheung
  • Patent number: 6039834
    Abstract: An apparatus and methods for an upgraded CVD system that provides a plasma for efficiently cleaning a chamber, according to a specific embodiment. Etching or depositing a layer onto a substrate also may be achieved using the upgraded CVD system of the present invention. In a specific embodiment, the present invention provides an easily removable, conveniently handled, and relatively inexpensive microwave plasma source as a retrofit for or a removable addition to existing CVD apparatus. In a preferred embodiment, the remote microwave plasma source efficiently provides a plasma without need for liquid-cooling the plasma applicator tube. In another embodiment, the present invention provides an improved CVD apparatus or retrofit of existing CVD apparatus capable of producing a plasma with the ability to efficiently clean the chamber when needed.
    Type: Grant
    Filed: March 5, 1997
    Date of Patent: March 21, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Tsutomu Tanaka, Mukul Kelkar, Kevin Fairbairn, Hari Ponnekanti, David Cheung
  • Patent number: 5976308
    Abstract: In one aspect, the invention is embodied in an RF inductively coupled plasma reactor including a vacuum chamber for processing a wafer, one or more gas sources for introducing into the chamber reactant gases, and an antenna capable of radiating RF energy into the chamber to generate a plasma therein by inductive coupling, the antenna lying in a two-dimensionally curved surface. In another aspect, invention is embodied in a plasma reactor including apparatus for spraying a reactant gas at a supersonic velocity toward the portion of the chamber overlying the wafer. In a still further aspect, the invention is embodied in a plasma reactor including a planar spray showerhead for spraying a reactant gas into the portion of the chamber overlying the wafer with plural spray nozzle openings facing the wafer, and plural magnets in an interior portion of the planar spray nozzle between adjacent ones of the plural nozzle openings, the plural magnets being oriented so as to repel ions from the spray nozzle openings.
    Type: Grant
    Filed: September 5, 1996
    Date of Patent: November 2, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Fairbairn, Romuald Nowak
  • Patent number: 5911834
    Abstract: The present invention provides a method and apparatus for delivering one or more process gases and one or more cleaning gases into one or more processing regions. The gas distribution system includes a gas inlet and a gas conduit, each disposed to deliver one or more gases into the chamber via a desired diffusing passage. Also, a gas delivery method and apparatus for splitting a gas feed into multiple feed lines is provided having a gas filter disposed upstream from a splitting coupling disposed in the line.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: June 15, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Fairbairn, Hari K. Ponnekanti, David Cheung
  • Patent number: 5909994
    Abstract: A vacuum loadlock is provided for housing a pair of wafers in proper alignment for concurrent processing. In one embodiment, a single chamber loadlock is provided with a gas diffuser disposed therein to decrease venting times within the loadlock. In another embodiment, a dual chamber loadlock is provided having first and second isolatable regions disposed adjacent a transfer region to increase throughput of the system.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: June 8, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Rick Blum, Kevin Fairbairn, Christopher Lane