Patents by Inventor Kevin Flory

Kevin Flory has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240045426
    Abstract: Autonomous driving is one of the world's most challenging computational problems. Very large amounts of data from cameras, RADARs, LIDARs, and HD-Maps must be processed to generate commands to control the car safely and comfortably in real-time. This challenging task requires a dedicated supercomputer that is energy-efficient and low-power, complex high-performance software, and breakthroughs in deep learning AI algorithms. To meet this task, the present technology provides advanced systems and methods that facilitate autonomous driving functionality, including a platform for autonomous driving Levels 3, 4, and/or 5. In preferred embodiments, the technology provides an end-to-end platform with a flexible architecture, including an architecture for autonomous vehicles that leverages computer vision and known ADAS techniques, providing diversity and redundancy, and meeting functional safety standards.
    Type: Application
    Filed: May 4, 2023
    Publication date: February 8, 2024
    Inventors: Michael Alan DITTY, Gary HICOK, Jonathan SWEEDLER, Clement FARABET, Mohammed Abdulla YOUSUF, Tai-Yuen CHAN, Ram GANAPATHI, Ashok SRINIVASAN, Michael Rod TRUOG, Karl GREB, John George MATHIESON, David NISTER, Kevin FLORY, Daniel PERRIN, Dan HETTENA
  • Publication number: 20230176577
    Abstract: Autonomous driving is one of the world's most challenging computational problems. Very large amounts of data from cameras, RADARs, LIDARs, and HD-Maps must be processed to generate commands to control the car safely and comfortably in real-time. This challenging task requires a dedicated supercomputer that is energy-efficient and low-power, complex high-performance software, and breakthroughs in deep learning AI algorithms. To meet this task, the present technology provides advanced systems and methods that facilitate autonomous driving functionality, including a platform for autonomous driving Levels 3, 4, and/or 5. In preferred embodiments, the technology provides an end-to-end platform with a flexible architecture, including an architecture for autonomous vehicles that leverages computer vision and known ADAS techniques, providing diversity and redundancy, and meeting functional safety standards.
    Type: Application
    Filed: December 7, 2022
    Publication date: June 8, 2023
    Inventors: Michael Alan DITTY, Gary HICOK, Jonathan SWEEDLER, Clement FARABET, Mohammed Abdulla YOUSUF, Tai-Yuen CHAN, Ram GANAPATHI, Ashok SRINIVASAN, Michael Rod TRUOG, Karl GREB, John George MATHIESON, David NISTER, Kevin FLORY, Daniel PERRIN, Dan HETTENA
  • Patent number: 11644834
    Abstract: Autonomous driving is one of the world's most challenging computational problems. Very large amounts of data from cameras, RADARs, LIDARs, and HD-Maps must be processed to generate commands to control the car safely and comfortably in real-time. This challenging task requires a dedicated supercomputer that is energy-efficient and low-power, complex high-performance software, and breakthroughs in deep learning AI algorithms. To meet this task, the present technology provides advanced systems and methods that facilitate autonomous driving functionality, including a platform for autonomous driving Levels 3, 4, and/or 5. In preferred embodiments, the technology provides an end-to-end platform with a flexible architecture, including an architecture for autonomous vehicles that leverages computer vision and known ADAS techniques, providing diversity and redundancy, and meeting functional safety standards.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 9, 2023
    Assignee: NVIDIA Corporation
    Inventors: Michael Alan Ditty, Gary Hicok, Jonathan Sweedler, Clement Farabet, Mohammed Abdulla Yousuf, Tai-Yuen Chan, Ram Ganapathi, Ashok Srinivasan, Michael Rod Truog, Karl Greb, John George Mathieson, David Nister, Kevin Flory, Daniel Perrin, Dan Hettena
  • Publication number: 20190258251
    Abstract: Autonomous driving is one of the world's most challenging computational problems. Very large amounts of data from cameras, RADARs, LIDARs, and HD-Maps must be processed to generate commands to control the car safely and comfortably in real-time. This challenging task requires a dedicated supercomputer that is energy-efficient and low-power, complex high-performance software, and breakthroughs in deep learning AI algorithms. To meet this task, the present technology provides advanced systems and methods that facilitate autonomous driving functionality, including a platform for autonomous driving Levels 3, 4, and/or 5. In preferred embodiments, the technology provides an end-to-end platform with a flexible architecture, including an architecture for autonomous vehicles that leverages computer vision and known ADAS techniques, providing diversity and redundancy, and meeting functional safety standards.
    Type: Application
    Filed: November 9, 2018
    Publication date: August 22, 2019
    Inventors: Michael Alan DITTY, Gary HICOK, Jonathan SWEEDLER, Clement FARABET, Mohammed Abdulla YOUSUF, Tai-Yuen CHAN, Ram GANAPATHI, Ashok SRINIVASAN, Michael Rod TRUOG, Karl GREB, John George MATHIESON, David Nister, Kevin Flory, Daniel Perrin, Dan Hettena
  • Patent number: 7787026
    Abstract: A camera has a continuous full-resolution burst mode wherein a sequence of full-resolution images is captured, is image processed by a pipeline of dedicated hardware image processing engines, is zoomed by a zoom engine, is compressed by a compression engine, and is stored into nonvolatile storage as a sequence of discrete files. The capturing of images and the storing of files continues at a rate of at least three frames per second until the user indicates burst mode operation is to stop or until nonvolatile storage becomes filled. Although the camera has a buffer memory into which raw sensor data is placed before image processing, the number of images that can be captured in a single burst is not limited by the size of the buffer memory. The cost of a consumer market camera having continuous burst mode capability is therefore reduced by reducing the required amount of buffer memory.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: August 31, 2010
    Assignee: Media Tek Singapore Pte Ltd.
    Inventors: Kevin Flory, Hung Do, William Stemper, Yasu Noguchi, Steven D. Loi