Patents by Inventor Kevin Gatenby

Kevin Gatenby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8691031
    Abstract: An aluminum alloy sheet is manufactured by preparing a slab having a thickness of 5 to 15 mm with a continuous casting machine by a continuous casting process using molten alloy containing 0.40% to 0.65% of Mg, 0.50% to 0.75% of Si, 0.05% to 0.20% of Cr, and 0.10% to 0.40% of Fe, a remainder being Al; winding the slab into a coil; cold-rolling the slab into a sheet; subjecting the sheet to solution heat treatment in such a manner that the sheet is heated to a temperature of 530° C. to 560° C. at a heating rate of 10° C./sec or more and then maintained at the temperature for five seconds or more; quenching the sheet with water; coiling up the sheet; maintaining the sheet at a temperature of 60° C. to 110° C. for 3 to 12 hours; and then cooling the sheet to room temperature.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: April 8, 2014
    Assignees: Nippon Light Metal Co., Ltd., Honda Motor Co., Ltd., Novelis Inc.
    Inventors: Pizhi Zhao, Toshiya Anami, Ichiro Okamoto, Hitoshi Kazama, Kunihiro Yasunaga, Noboru Hayashi, Kevin Gatenby, Simon Barker, Edward Luce
  • Patent number: 8425698
    Abstract: An aluminum alloy sheet having excellent press formability and stress corrosion cracking resistance, comprises 3.3 to 3.6 percent by weight of Mg and 0.1 to 0.2 percent by weight of Mn, furthermore, 0.05 to 0.3 percent by weight of Fe and 0.05 to 0.15 percent by weight of Si, and the remainder comprises Al and incidental impurities, wherein the sizes of intermetallic compounds is 5 ?m or less, the recrystallized grain size is 15 ?m or less in the region at a depth of 10 to 30 ?m below the sheet surface, and the surface roughness is Ra 0.2 to 0.7 ?m.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: April 23, 2013
    Assignees: Nippon Light Metal Co., Ltd, Novelis Inc., Honda Motor Co., Ltd.
    Inventors: Pizhi Zhao, Toshiya Anami, Ichiro Okamoto, Hitoshi Kazama, Kunihiro Yasunaga, Noboru Hayashi, Kevin Gatenby, Mark Gallerneault, Simon Barker
  • Publication number: 20120291924
    Abstract: An aluminum alloy sheet is manufactured by preparing a slab having a thickness of 5 to 15 mm with a continuous casting machine by a continuous casting process using molten alloy containing 0.40% to 0.65% of Mg, 0.50% to 0.75% of Si, 0.05% to 0.20% of Cr, and 0.10% to 0.40% of Fe, a remainder being Al; winding the slab into a coil; cold-rolling the slab into a sheet; subjecting the sheet to solution heat treatment in such a manner that the sheet is heated to a temperature of 530° C. to 560° C. at a heating rate of 10° C./sec or more and then maintained at the temperature for five seconds or more; quenching the sheet with water; coiling up the sheet; maintaining the sheet at a temperature of 60° C. to 110° C. for 3 to 12 hours; and then cooling the sheet to room temperature.
    Type: Application
    Filed: June 6, 2012
    Publication date: November 22, 2012
    Applicants: NIPPON LIGHT METAL CO., LTD., NOVELIS INC., HONDA MOTOR CO., LTD.
    Inventors: Pizhi ZHAO, Toshiya ANAMI, Ichiro OKAMOTO, Hitoshi KAZAMA, Kunihiro YASUNAGA, Noboru HAYASHI, Kevin GATENBY, Simon BARKER, Edward LUCE
  • Patent number: 8122938
    Abstract: Exemplary embodiments of the invention provide a side dam for a continuous metal casting apparatus having elongated opposed casting surfaces forming a casting cavity. The side dam has an elongated upstream part and an elongated downstream part that are mutually laterally pivotable, and a smooth metal-contacting side surface extending continuously from an upstream end to a downstream end of the side dam. The surface has regions thereof formed on the upstream part and the downstream part. Mutual pivoting of the upstream part and the downstream part of the side dam enables the regions of the smooth metal-contacting side surface to be moved out of mutual coplanar alignment. The side dams can therefore be used to form either a convergent or divergent casting cavity to assists the casting procedure and to enhance the properties of the cast article.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: February 28, 2012
    Assignee: Novelis Inc.
    Inventors: Edward Luce, Eric Lees, Kevin Gatenby, Daniel Godin, Rejean Leblanc
  • Publication number: 20100243194
    Abstract: Exemplary embodiments of the invention provide a side dam for a continuous metal casting apparatus having elongated opposed casting surfaces forming a casting cavity. The side dam has an elongated upstream part and an elongated downstream part that are mutually laterally pivotable, and a smooth metal-contacting side surface extending continuously from an upstream end to a downstream end of the side dam. The surface has regions thereof formed on the upstream part and the downstream part. Mutual pivoting of the upstream part and the downstream part of the side dam enables the regions of the smooth metal-contacting side surface to be moved out of mutual coplanar alignment. The side dams can therefore be used to form either a convergent or divergent casting cavity to assists the casting procedure and to enhance the properties of the cast article.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 30, 2010
    Inventors: Edward Luce, Eric Lees, Kevin Gatenby, Daniel Godin, Rejean Leblanc
  • Publication number: 20090081072
    Abstract: An aluminum alloy sheet is manufactured by preparing a slab having a thickness of 5 to 15 mm with a continuous casting machine by a continuous casting process using molten alloy containing following components: 0.40% to 0.65% of Mg, 0.50% to 0.75% of Si, 0.05% to 0.20% of Cr, and 0.10% to 0.40% of Fe, remainder being Al, the components being essential elements, and optionally up to 0.15% Cu, 0.10% Ti; winding the slab into a coil; hot-rolling or directly coiling up the slab; cold-rolling the slab into a sheet; subjecting the sheet to solution heat treatment with a continuous annealing furnace; and then pre-aging the sheet. The aluminum alloy sheet has the same composition as the molten alloy, has a grain size of 10 to 25 ?m, is superior in bake hardenability, bendability, and surface quality (orange peel), and can be manufactured with low cost.
    Type: Application
    Filed: May 25, 2005
    Publication date: March 26, 2009
    Applicants: NIPPON LIGHT METAL CO., LTD, HONDA MOTOR., LTD., NOVELIS INC.
    Inventors: Pizhi Zhao, Toshiya Anami, Ichiro Okamoto, Hitoshi Kazama, Kunihiro Yasunaga, Noboru Hayashi, Kevin Gatenby, Simon Barker, Edward Luce
  • Publication number: 20090007994
    Abstract: An aluminum alloy sheet having excellent press formability and stress corrosion cracking resistance, comprises 3.3 to 3.6 percent by weight of Mg and 0.1 to 0.2 percent by weight of Mn, furthermore, 0.05 to 0.3 percent by weight of Fe and 0.05 to 0.15 percent by weight of Si, and the remainder comprises Al and incidental impurities, wherein the sizes of intermetallic compounds is 5 ?m or less, the recrystallized grain size is 15 ?m or less in the region at a depth of 10 to 30 ?m below the sheet surface, and the surface roughness is Ra 0.2 to 0.7 ?m.
    Type: Application
    Filed: July 30, 2004
    Publication date: January 8, 2009
    Applicants: NOVELIS INC., NIPPON LIGHT METAL CO., LTD., HONDA MOTOR CO., LTD.
    Inventors: Pizhi Zhao, Toshiya Anami, Ichiro Okamoto, Hitoshi Kazama, Kunihiro Yasunaga, Noboru Hayashi, Kevin Gatenby, Mark Gallerneault, Simon Barker
  • Publication number: 20070215314
    Abstract: A twin-belt casting machine for casting metal strip. The machine is provided with a casting cavity which includes an upstream fixed casting region, in which the belts are in fixed convergent paths in contact with the cast slab, and an adjacent downstream portion in which the belts are adjustable between alignment with the fixed convergent paths and non-alignment therewith (being less convergent or divergent). When the adjustable portions of the paths are moved outwardly relative to the fixed convergent paths, the belts separate from the cast slab at differing predetermined points within the casting cavity. By adjusting the downstream portion of the casting cavity in this manner, the casting machine can operate at essentially constant throughput for a wide range of alloys while ensuring that the cast slab exiting the caster has a temperature within a predetermined range suitable for further rolling to produce sheet product.
    Type: Application
    Filed: March 15, 2007
    Publication date: September 20, 2007
    Inventors: John Fitzsimon, Ronald Desrosiers, Willard Gallerneault, Kevin Gatenby
  • Publication number: 20070209778
    Abstract: A casting belt for using in a single-belt or twin-belt casting apparatus is disclosed. The casting belt is made of aluminum alloy such as an alloy from the AA5XXX and AA6XXX systems, preferably having a thickness in the range of 1 to 2 mm. The aluminum casting belt of the invention is suitable for casting non-ferrous and light metals such as aluminum, magnesium, copper, zinc and their alloys, especially aluminum alloys such as Al—Mg, Al—Mg—Si, Al—Fe—Si and Al—Fe—Mn—Si alloy systems. A belt casting machine and process using the aluminum casting belt of the invention are also disclosed.
    Type: Application
    Filed: October 1, 2004
    Publication date: September 13, 2007
    Applicant: Novelis Inc.
    Inventors: Willard Gallerneault, Kevin Gatenby, Iljoon Jin, Ronald Desrosiers
  • Patent number: 7250221
    Abstract: A method of producing a clad metal ingot suitable for rolling to form a clad metal sheet, and the clad metal ingot so produced. The method involves providing a solid core ingot having an upper side with a rolling face thereon having cavities extending inwardly into the ingot from the rolling face. All or all-but-one of the cavities are blocked against molten metal entry and casting cores extending outwardly from the rolling surface are provided in alignment with the cavities. Molten cladding metal is cast on the rolling face around the casting cores to produce a composite ingot and the casting cores are removed to produce voids in the cladding layer, and the cavities are unblocked. The resulting interconnected cavities and voids are filled with a molten metal to form cast-in-place metal lugs keying or pinning the cladding layer to the core ingot.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: July 31, 2007
    Assignee: Novelis Inc.
    Inventors: Jeff Ballyns, Don Doutre, Kevin Gatenby, Eric Lees, Edward S. Luce, Peter Wales, Gijsbertus Langelaan
  • Publication number: 20060177683
    Abstract: A method of producing a clad metal ingot suitable for rolling to form a clad metal sheet, and the clad metal ingot so produced. The method involves providing a solid core ingot having an upper side with a rolling face thereon having cavities extending inwardly into the ingot from the rolling face. All or all-but-one of the cavities are blocked against molten metal entry and casting cores extending outwardly from the rolling surface are provided in alignment with the cavities. Molten cladding metal is cast on the rolling face around the casting cores to produce a composite ingot and the casting cores are removed to produce voids in the cladding layer, and the cavities are unblocked. The resulting interconnected cavities and voids are filled with a molten metal to form cast-in-place metal lugs keying or pinning the cladding layer to the core ingot.
    Type: Application
    Filed: February 24, 2006
    Publication date: August 10, 2006
    Inventors: Jeff Ballyns, Don Doutre, Kevin Gatenby, Eric Lees, Edward Luce, Peter Wales, Gijsbertus Langelaan
  • Patent number: 6663729
    Abstract: An aluminum alloy foil is formed from an alloy containing about 1.2 to 1.7% by weight Fe and about 0.35 to 0.80% by weight Si, with the balance aluminum and incidental impurities. The alloy is continuously strip cast to form a strip having a thickness less than about 25 mm, which is then cold rolled to interanneal gauge and interannealed at a temperature of at least 400° C. The interannealed strip is cold rolled and further annealed to form the final foil product, having excellent rollability combined with high strength of the final foil.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: December 16, 2003
    Assignee: Alcan International Limited
    Inventors: Iljoon Jin, Kevin Gatenby, Christopher Gabryel, Toshiya Anami, Takahiko Watai, Ichiro Okamoto
  • Patent number: 6531006
    Abstract: An aluminum alloy foil is formed from an alloy containing about 1.2 to 1.7% by weight iron, about 0.4 to 0.8% by weight silicon and about 0.07 to 0.20% by weight manganese, with the balance aluminum and incidental impurities. The alloy is continuously strip cast, e.g. on a belt caster, to form a strip having a thickness of less than about 25 mm, which is then cold rolled to interanneal gauge followed by interannealing at a temperature of about 280 to 350° C. The interanneal strip is cold rolled to final gauge and further annealed to form the final foil product, having high strength and excellent quality.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: March 11, 2003
    Assignee: Alcan International Limited
    Inventors: Iljoon Jin, Kevin Gatenby, Christopher Gabryel
  • Publication number: 20020153069
    Abstract: An aluminum alloy foil is formed from an alloy containing about 1.2 to 1.7% by weight iron, about 0.4 to 0.8% by weight silicon and about 0.07 to 0.20% by weight manganese, with the balance aluminum and incidental impurities. The alloy is continuously strip cast, e.g. on a belt caster, to form a strip having a thickness of less than about 25 mm, which is then cold rolled to interanneal gauge followed by interannealing at a temperature of about 280 to 350° C. The interanneal strip is cold rolled to final gauge and further annealed to form the final foil product, having high strength and excellent quality.
    Type: Application
    Filed: February 13, 2001
    Publication date: October 24, 2002
    Inventors: Iljoon Jin, Kevin Gatenby, Christopher Gabryel
  • Publication number: 20020153068
    Abstract: An aluminum alloy foil is formed from an alloy containing about 1.2 to 1.7% by weight Fe and about 0.35 to 0.80% by weight Si, with the balance aluminum and incidental impurities. The alloy is continuously strip cast to form a strip having a thickness less than about 25 mm, which is then cold rolled to interanneal gauge and interannealed at a temperature of at least 400° C. The interannealed strip is cold rolled and further annealed to form the final foil product, having excellent rollability combined with high strength of the final foil.
    Type: Application
    Filed: February 13, 2001
    Publication date: October 24, 2002
    Inventors: Iljoon Jin, Kevin Gatenby, Christopher Gabryel, Toshiya Anami, Takahiko Watai, Ichiro Okamoto
  • Patent number: 6238497
    Abstract: A method of producing an aluminum alloy fin stock material, comprising the steps of continuously strip casting an aluminum finstock alloy to form an as-cast strip, rolling the as-cast strip to form a sheet article of intermediate gauge, annealing the sheet article of intermediate gauge, and cold rolling the annealed sheet article of intermediate gauge to produce an aluminum finstock material of final gauge. The steps are carried out on a finstock alloy which comprises the following elements in weight percent: Fe 1.6 to 2.4; Si 0.7 to 1.1; Mn 0.3 to 0.6; Zn 0.3 to 2.0; Ti 0.005 to 0.040; incidental elements less than 0.05 each, total no more than 0.15; and the balance aluminum. The invention also relates to the finstock material so-produced which has good thermal conductivity, and is suitable for use in thin gauge (e.g. less than 100 &mgr;m, and preferably 60±10 &mgr;m).
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: May 29, 2001
    Assignee: Alcan International Limited
    Inventors: Iljoon Jin, Kevin Gatenby, Willard Mark Truman Gallerneault, Toshiya Anami, Yoshito Oki, Ichiro Okamoto
  • Patent number: 6165291
    Abstract: An aluminum alloy fin stock of lower (more negative) corrosion potential and higher thermal conductivity is produced by a process, which comprises continuously strip casting the alloy to form a strip, cold rolling the strip to an intermediate gauge sheet, annealing the sheet and cold rolling the sheet to final gauge. Lower corrosion potential and higher thermal conductivity are imparted by carrying out the continuous strip casting while cooling the alloy at a rate of at least 300.degree. C./second, e.g. by conducting the casting step in a twin-roll caster.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: December 26, 2000
    Assignee: Alcan International Limited
    Inventors: Iljoon Jin, Kevin Gatenby, Toshiya Anami, Yoshito Oki