Patents by Inventor Kevin J. Knopp

Kevin J. Knopp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7636157
    Abstract: Disclosed herein are Raman probes that include: (a) a first optical fiber for receiving laser excitation light from a light source and transmitting the same; (b) a first filter for receiving light from the first optical fiber and adapted to pass the laser excitation light and to block spurious signals associated with the light; (c) a second filter for receiving light from the first filter and adapted to direct the light toward a specimen; and (d) focusing apparatus for receiving the light from the second filter, focusing the light on the specimen so as to generate the Raman signal, and returning the Raman signal to the second filter. The second filter is further configured so that when the second filter receives the Raman signal from the focusing apparatus, the second filter filters out unwanted laser excitation light before directing the Raman signal to a second optical fiber.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: December 22, 2009
    Assignee: Ahura Corporation
    Inventors: Peidong Wang, Daryoosh Vakhshoori, Yu Shen, Kevin J. Knopp, Masud Azimi
  • Publication number: 20090251694
    Abstract: A Raman probe system includes: a base station; a mobile robot remotely controllable from the base station; a Raman probe assembly supported by the robot, the Raman probe assembly including a laser and a spectrometer; a camera supported by the robot; and a communication subsystem operable to communicate images from the camera and results from the Raman probe assembly to the base station. In some embodiments, a Raman probe system includes: a mobile robot remotely controllable from a base station, the robot including a body and an articulated arm; a camera supported by the robot; a Raman probe assembly supported by the robot, the optical control assembly mounted on the body of the robot; and an optical probe mounted on the articulated arm of the robot; and a wireless communication system operable to communicate images from the camera and results from the Raman probe assembly to the base station.
    Type: Application
    Filed: June 15, 2009
    Publication date: October 8, 2009
    Applicant: AHURA SCIENTIFIC INC.
    Inventors: Kevin J. Knopp, Peidong Wang, Masud Azimi, Daryoosh Vakhshoori
  • Publication number: 20090237647
    Abstract: We disclose an apparatus comprising: a hand-portable optical analysis unit including an optical interface; and a device configured to receive and releasably engage the hand-portable optical analysis unit. The device comprises: a housing; a sample unit in the housing; and a resilient member configured to bias the sample unit and the hand-portable analysis unit towards each other when the hand-portable optical analysis unit is received in the device to compress a sample disposed between the sample unit and the optical interface of the optical analysis unit. Methods of analyzing samples are also disclosed.
    Type: Application
    Filed: March 30, 2009
    Publication date: September 24, 2009
    Inventors: Masud Azimi, Arran Bibby, Christopher D. Brown, Peili Chen, Kevin J. Knopp, Daryoosh Vakhshoori, Peidong Wang, Stephen McLaughlin
  • Publication number: 20090213361
    Abstract: This disclosure relates to optical measurement and identification of samples.
    Type: Application
    Filed: April 14, 2009
    Publication date: August 27, 2009
    Inventors: Gregory Vander Rhodes, Kevin J. Knopp, Christopher D. Brown, Myrle E. Sieger, III
  • Patent number: 7548311
    Abstract: A Raman probe assembly comprises: a light source for generating laser excitation light; a camera for capturing an image; a light analyzer for analyzing a Raman signature; and a light path for (i) delivering the laser excitation light from the light source to the specimen so as to produce the Raman signature for the specimen, (ii) capturing an image of the specimen and directing that image to the camera, and (iii) directing the Raman signature of the specimen to the light analyzer. A method includes providing a Raman probe assembly carried by a remote controlled robot; navigating the remote control robot to a position adjacent to a specimen; opening a shutter/wiper disposed adjacent to a window of the Raman analyzer; using a camera to aim the probe body at the specimen; energizing a light source; and analyzing the return light passed to the light analyzer.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: June 16, 2009
    Assignee: Ahura Corporation
    Inventors: Kevin J. Knopp, Peidong Wang, Masud Azimi, Daryoosh Vakhshoori
  • Patent number: 7499159
    Abstract: An optical probe assembly includes a light guide that includes a core region and a surrounding cladding region. The core region is constructed so as to minimize the creation of a relatively broadband spurious background noise signal when conveying the Raman pump light to the specimen, and the cladding region is constructed so as to satisfy the wave guiding reflection requirements of the Raman pump light and the Raman signature. A Raman spectroscopy system includes: a laser for producing Raman pump light; an optical probe assembly; and an optical spectrum analyzer for receiving the Raman signature of a specimen and identifying and characterizing the specimen based upon the spectrum of the Raman signature. Related methods are also disclosed.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: March 3, 2009
    Assignee: Ahura Corporation
    Inventors: Kevin J. Knopp, Leyun Zhu, Daryoosh Vakhshoori
  • Publication number: 20090033928
    Abstract: A Raman spectrometry assembly includes a Raman spectrometer having a laser light source and a Raman signal analyzer, an interface module comprising a housing which is connectable to and disconnectable from the spectrometer, and a fiber optic assembly which is connectable to and disconnectable from the interface module, the fiber optic assembly including optical fibers and a probe head at a distal end thereof for disposition adjacent a specimen to be tested, the optical fibers extending from the probe head and adapted to extend to the interface module.
    Type: Application
    Filed: August 22, 2007
    Publication date: February 5, 2009
    Inventors: Masud Azimi, Kevin J. Knopp, Steve McLaughlin
  • Publication number: 20080291426
    Abstract: We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
    Type: Application
    Filed: September 28, 2007
    Publication date: November 27, 2008
    Applicant: AHURA CORPORATION
    Inventors: Masud Azimi, Arran Bibby, Christopher D. Brown, Peili Chen, Kevin J. Knopp, Daryoosh Vakhshoori, Peidong Wang
  • Patent number: 7420672
    Abstract: Disclosed herein are Raman probes that include: (a) a first optical fiber for receiving laser excitation light from a light source and transmitting the same; (b) a first filter for receiving light from the first optical fiber and adapted to pass the laser excitation light and to block spurious signals associated with the light; (c) a second filter for receiving light from the first filter and adapted to direct the light toward a specimen; and (d) focusing apparatus for receiving the light from the second filter, focusing the light on the specimen so as to generate the Raman signal, and returning the Raman signal to the second filter. The second filter is further configured so that when the second filter receives the Raman signal from the focusing apparatus, the second filter filters out unwanted laser excitation light before directing the Raman signal to a second optical fiber.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: September 2, 2008
    Assignee: Ahura Corporation
    Inventors: Peidong Wang, Daryoosh Vakhshoori, Yu Shen, Kevin J. Knopp, Masud Azimi
  • Patent number: 7215836
    Abstract: The invention is in the field of distributed Raman amplification for digital and analog transmission applications and other applications, e.g., instrumentation and imaging applications, including HFC-CATV applications. In particular, the invention uses a high power broadband source of amplified spontaneous emission (ASE) as the Raman pump source for improved system performance. The invention also includes methods for constructing such a high-power broadband Raman pump.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: May 8, 2007
    Assignee: Ahura Corporation
    Inventors: Daryoosh Vakhshoori, Masud Azimi, Min Jiang, Kevin J. Knopp, Peidong Wang
  • Patent number: 7190861
    Abstract: The invention is in the field of distributed Raman amplification for digital and analog transmission applications and other applications, e.g., instrumentation and imaging applications, including HFC-CATV applications. In particular, the invention uses a high power broadband source of amplified spontaneous emission (ASE) as the Raman pump source for improved system performance. The invention also includes methods for constructing such a high-power broadband Raman pump.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: March 13, 2007
    Inventors: Kevin J. Knopp, Daryoosh Vakhshoori, Peidong Wang
  • Patent number: 7180653
    Abstract: A laser source for generating amplified and filtered optical output, comprising a VCSEL, a power optical amplifier, and a filter. A laser source for generating amplified and filtered optical output, comprising a first mirror and a second mirror forming a cavity, an optical amplifier disposed in the cavity, and filter means for filtering ASE generated and amplified by the optical amplifier. A system for generating amplified and filtered optical output, comprising an optical platform having electrical connections and a fiber optic connection, a VCSEL configured to generate seed light, an optical amplifier configured to receive and amplify seed light to generate power boosted ASE and a filter configured to reduce background noise from the power boosted ASE. A method of generating optical output having high optical power with high spectral fidelity, comprising generating seed light, amplifying seed light, and filtering the amplified optical output to reduce background noise.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: February 20, 2007
    Assignee: Ahura Corporation
    Inventors: Kevin J. Knopp, Daryoosh Vakhshoori, Masud Azimi, Peidong Wang
  • Patent number: 7110109
    Abstract: A Raman spectroscopy system includes a laser source for providing a laser beam, and an optical probe assembly including a photonic crystal fiber light guide for receiving the laser beam from the laser source and for directing the laser beam toward a specimen of selected material, a lens for receiving the laser beam in the light guide and directing the beam onto the specimen and for receiving reflected light from the specimen and directing the reflected light back through the fiber light guide, and a dichroic beam splitter for directing a portion of the reflected beam out of the optical probe assembly. The system further includes an optical spectrum analyzer for receiving the portion of the reflected beam and for exhibiting a Raman signature of the specimen.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: September 19, 2006
    Assignee: Ahura Corporation
    Inventors: Kevin J. Knopp, Daryoosh Vakhshoori
  • Patent number: 7068905
    Abstract: An optical bandwidth source for generating amplified spontaneous emission (ASE) across a selected wavelength range, the optical bandwidth source including a waveguide having a first end and a second end, and comprising a plurality of separate wavelength gain subsections arranged in a serial configuration between the first end and the second end so as to collectively form an active waveguide between the first end and the second end; wherein each of the wavelength gain subsections is configured to produce ASE across a wavelength range which is less than, but contained within, the selected wavelength range, whereby the plurality of separate wavelength gain subsections collectively produce ASE across the selected wavelength range.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: June 27, 2006
    Inventors: Daryoosh Vakhshoori, Kevin J. Knopp, Peidong Wang, Masud Azimi
  • Patent number: 7057791
    Abstract: An optical isolator is disclosed for transmitting light in a first direction and blocking light in a second direction along an optical pathway. The optical isolator includes an input polarizer having a pass axis at first angle, an output polarizer having a pass axis at second angle, a Faraday rotator material between the polarizers having a Verdet constant and an axis of maximum length therethrough, generation means for generating a magnetic field around and inside the rotator material, and at least one reflector configured to define an optical length through the rotator material which is longer than the axis therethrough. The optical pathway length through the rotator material, the magnetic field strength, and the Verdet constant are selected so as to rotate light through the Faraday rotator material from the first angle to the second angle.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: June 6, 2006
    Assignee: Ahura Corporation
    Inventors: Masud Azimi, Daryoosh Vakhshoori, Kevin J. Knopp, Gregory Vander Rhodes, Peidong Wang
  • Publication number: 20040263843
    Abstract: A Raman spectroscopy system includes a laser source for providing a laser beam, and an optical probe assembly including a photonic crystal fiber light guide for receiving the laser beam from the laser source and for directing the laser beam toward a specimen of selected material, a lens for receiving the laser beam in the light guide and directing the beam onto the specimen and for receiving reflected light from the specimen and directing the reflected light back through the fiber light guide, and a dichroic beam splitter for directing a portion of the reflected beam out of the optical probe assembly. The system further includes an optical spectrum analyzer for receiving the portion of the reflected beam and for exhibiting a Raman signature of the specimen.
    Type: Application
    Filed: April 16, 2004
    Publication date: December 30, 2004
    Inventors: Kevin J. Knopp, Daryoosh Vakhshoori
  • Publication number: 20040247275
    Abstract: An optical bandwidth source for generating amplified spontaneous emission (ASE) across a particular wavelength range, the optical bandwidth source comprising a waveguide having a first end and a second end, and the waveguide having a plurality of separate wavelength gain subsections arranged in a serial configuration to form an active waveguide between the first end and the second end; wherein each of the wavelength gain subsections is arranged relative to one another so as to produce ASE across the particular wavelength range.
    Type: Application
    Filed: March 12, 2004
    Publication date: December 9, 2004
    Inventors: Daryoosh Vakhshoori, Kevin J. Knopp, Peidong Wang, Masud Azimi
  • Publication number: 20040240031
    Abstract: An optical isolator is disclosed for transmitting light in a first direction and blocking light in a second direction along an optical pathway. The optical isolator includes an input polarizer having a pass axis at first angle, an output polarizer having a pass axis at second angle, a Faraday rotator material between the polarizers having a Verdet constant and an axis of maximum length therethrough, generation means for generating a magnetic field around and inside the rotator material, and at least one reflector configured to define an optical length through the rotator material which is longer than the axis therethrough. The optical pathway length through the rotator material, the magnetic field strength, and the Verdet constant are selected so as to rotate light through the Faraday rotator material from the first angle to the second angle.
    Type: Application
    Filed: March 15, 2004
    Publication date: December 2, 2004
    Inventors: Masud Azimi, Daryoosh Vakhshoori, Kevin J. Knopp, Gregory Vander Rhodes, Peidong Wang
  • Patent number: 6768757
    Abstract: A laser comprising: a front mirror and a rear mirror which are disposed so as to establish a reflective cavity therebetween; a gain region disposed between the front mirror and the rear mirror, the gain region being constructed so that when the gain region is appropriately stimulated by light from a pump laser, the gain region will emit light; and one of the front mirror and the rear mirror being positioned to admit pump light into the reflective cavity, the one of the front mirror and the rear mirror having a low and substantially constant reflectance over a pumping wavelength range and having a high and substantially constant reflectance over a lasing wavelength range.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: July 27, 2004
    Assignee: Nortel Networks, Ltd.
    Inventors: Kevin J. Knopp, Peidong Wang, Daryoosh Vakhshoori
  • Patent number: 6748003
    Abstract: A VCSEL having improved diffraction loss; comprising a series of deposited material layers comprising the structure of the VCSEL, and an intracavity lens formed in one of the series of deposited material layers. In one preferred form of the invention, the VCSEL comprises a bottom mirror mounted to the top of a substrate; a bottom spacer mounted to the top of the bottom mirror; a gain region mounted to the top of the bottom spacer; a top spacer mounted to the top of the gain region; and a top mirror mounted to the top of the top spacer, such that a reflective cavity is formed between the bottom mirror and the top mirror; with at least one of the bottom mirror, bottom spacer, gain region, top spacer and top mirror containing a superlattice structure, and with an adjacent region being subjected to ion implantation and rapid thermal annealing so as to disorder the superlattice structure and change its index of refraction, whereby to create an intracavity lens so as to reduce diffraction loss.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: June 8, 2004
    Assignee: Nortel Networks Limited
    Inventors: Kevin J. Knopp, Daryoosh Vakhshoori