Patents by Inventor Kevin L. Kilgore

Kevin L. Kilgore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210275802
    Abstract: Described herein are systems and methods for the treatment of pain using electrical nerve conduction block (ENCB). Contrary to other methods of pain treatment, the ENCB can establish a direct block of neural activity, thereby eliminating the pain. Additionally, the ENCB can be administered without causing electrochemical damage. An example method can include: placing at least one electrode contact in electrical communication with a region of a subject's spinal cord; applying an electrical nerve conduction block (ENCB) to a nerve in the region through the at least one electrode contact; and blocking neural activity with the ENCB to reduce the pain or other unwanted sensation in the subject.
    Type: Application
    Filed: May 13, 2021
    Publication date: September 9, 2021
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore, Scott Lempka, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Publication number: 20210260381
    Abstract: A method of blocking signal transmission through a nerve, with reduced onset activity includes applying an HFAC to an axon of a nerve to block the transmission of signals through the axon. The method may also include applying a direct current (DC) to the axon, increasing the amplitude of the DC over time to a predetermined amplitude, applying the HFAC, and then decreasing the DC. The method may also include temporarily reducing the amplitude of the HFAC to permit the transmission of signals through the axon and subsequently increasing the amplitude to block transmission without triggering an onset response. The method may also include temporarily applying an unbalanced charge to the nerve and then balancing the charge over time.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 26, 2021
    Inventors: Kevin L. Kilgore, Niloy Bhadra
  • Patent number: 11033734
    Abstract: Described herein are systems and methods for the treatment of pain using electrical nerve conduction block (ENCB). Contrary to other methods of pain treatment, the ENCB can establish a direct block of neural activity, thereby eliminating the pain. Additionally, the ENCB can be administered without causing electrochemical damage. An example method can include: placing at least one electrode contact in electrical communication with a region of a subject's spinal cord; applying an electrical nerve conduction block (ENCB) to a nerve in the region through the at least one electrode contact; and blocking neural activity with the ENCB to reduce the pain or other unwanted sensation in the subject.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: June 15, 2021
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore, Scott Lempka, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Publication number: 20210113840
    Abstract: One aspect of the present disclosure is a system including a waveform generator, a controller, and an electrical contact. The waveform generator is for generating an electrical nerve conduction block (ENCB). The controller is coupled with the waveform generator. The controller is configured to receive an input comprising at least one parameter to adjust the ENCB. The electrical contact is coupled with the waveform generator. The electrical contact is configured to be placed into contact with a nerve. The electrical contact comprises a high charge capacity material that prevents formation of damaging electro-chemical products at a charge delivered by the ENCB. The electrical contact is configured to deliver the ENCB to the nerve to block transmission of a signal related to a pain through the nerve.
    Type: Application
    Filed: December 10, 2020
    Publication date: April 22, 2021
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore, Scott Lempka, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Publication number: 20210060339
    Abstract: The present disclose relates to slurry electrodes that can deliver direct current (DC) nerve conduction block to neural tissue. Such slurry electrodes can include an ionically conductive membrane having a first side and a second side. Slurry electrodes can also include a mechanism that is configured to encapsulate a slurry against the first side of the ionically conductive membrane. The slurry can include an ionically conductive material and a plurality of electrically conducting high surface area particles. The mechanism and the first side of the ionically conductive membrane make up a housing for the slurry. Slurry electrodes can also include a connector configured to establish an electrical connection between the slurry and the DC generator.
    Type: Application
    Filed: December 28, 2018
    Publication date: March 4, 2021
    Inventors: Tina L. VRABEC, Jesse S. WAINRIGHT, Niloy BHADRA, Kevin L. KILGORE
  • Publication number: 20210060344
    Abstract: A DC nerve conduction block can be maintained by delivering a subthreshold direct current (DC) after priming a neural structure with a suprathreshold DC. A waveform generator can provide a DC waveform including a first phase with a first amplitude capable of providing a nerve conduction block of a neural structure within 1 second and a second phase with a second amplitude less than the first amplitude. One or more electrodes can deliver the first phase for to the neural structure for a first time to provide the nerve conduction block of the neural structure within 1 second and deliver the second phase to the neural structure for a second time to maintain the block of the neural structure. By maintaining the DC nerve conduction block with the subthreshold DC, significant power can be saved, resulting in an extended battery life of the waveform generator.
    Type: Application
    Filed: December 28, 2018
    Publication date: March 4, 2021
    Inventors: Tina L. VRABEC, Laura SHAW, Kevin L. KILGORE, Niloy BHADRA
  • Publication number: 20210052897
    Abstract: The occurrence of negative consequences (e.g., painful tetanic muscle contractions) associated with the onset response associated with kilohertz frequency alternating current (KHFAC) electrical nerve block can be reduced by fatiguing a muscle (through depletion of neurotransmitters at the neuromuscular junction, within a second) before applying KHFAC electrical nerve block to a nerve associated with the muscle. The nerve can first be stimulated with an electrical signal for a first time period to fatigue the muscle. Then, immediately following the first time period (while the muscle is fatigued), a blocking electrical signal (e.g., a kilohertz frequency alternating current waveform) can be applied to the nerve to create a localized nerve block.
    Type: Application
    Filed: June 22, 2020
    Publication date: February 25, 2021
    Inventors: Niloy Bhadra, Thomas Eggers, Kevin L Kilgore
  • Patent number: 10864373
    Abstract: One aspect of the present disclosure is a system including a waveform generator, a controller, and an electrical contact. The waveform generator is for generating an electrical nerve conduction block (ENCB). The controller is coupled with the waveform generator. The controller is configured to receive an input comprising at least one parameter to adjust the ENCB. The electrical contact is coupled with the wave-form generator. The electrical contact is configured to be placed into contact with a nerve. The electrical contact comprises a high charge capacity material that prevents formation of damaging electro-chemical products at a charge delivered by the ENCB. The electrical contact is configured to deliver the ENCB to the nerve to block transmission of a signal related to a pain through the nerve.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: December 15, 2020
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore, Scott Lempka, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Patent number: 10828485
    Abstract: The present disclose generally relates to high-charge capacity electrodes that include a substrate and a coating covering at least a portion of the substrate that includes active particles held together by a biocompatible binding material. One aspect of the present disclosure relates a system that can block conduction in a nerve. The system can include a current generator that generates a direct current (DC). The system can also include a high-charge capacity electrode that can be coupled to the current generator to deliver the DC to block conduction in a nerve.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: November 10, 2020
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Narendra Bhadra, Jesse Wainright, Niloy Bhadra, Kevin L. Kilgore, Tina Vrabec
  • Publication number: 20200345255
    Abstract: A modified nerve cuff electrode is designed to enhance the stability of neural recording and/or nerve stimulation. Any nerve cuff electrode includes a nerve cuff and a plurality of electrodes within the nerve cuff. While traditional nerve cuff electrodes have every one of the plurality of electrode contacts on the inner surface of the nerve cuff, in the modified nerve cuff electrode each of an inner surface and an outer surface of the nerve cuff has at least one electrode contact. The at least one electrode contact on the outer surface can be electrically isolated from the peripheral nerve to provide a stable reference or ground during recording or a stable pathway for a return current during stimulation to enhance the stability of the recording or the stimulation.
    Type: Application
    Filed: October 2, 2018
    Publication date: November 5, 2020
    Inventors: Narendra BHADRA, Tina L. VRABEC, Niloy BHADRA, Kevin L. KILGORE
  • Publication number: 20200289817
    Abstract: Chronic pain management can be achieved by electrically anesthetizing a peripheral nerve with on-demand electrical nerve block (OD-ENB). OD-ENB can be provided by an implantable capsule. Externally, at least a portion of the capsule can be constructed of a conductive membrane and the rest of the capsule comprises a biocompatible material. A blocking electrode contact, a return electrode contact, and a powering/communication component can be within the capsule. The blocking electrode contact can deliver a direct current (DC) through a portion of the conductive membrane to block conduction in the neural tissue to provide the OD-ENB. The return electrode contact can receive a return current from the neural tissue through another portion of the conductive membrane. The powering/communication component can communicate with one or more external components located external to the patient's body to receive a power signal. Notably the capsule has no internal battery.
    Type: Application
    Filed: March 16, 2020
    Publication date: September 17, 2020
    Inventors: Tina L. Vrabec, Kevin L. Kilgore, Jesse S. Wainright, Niloy Bhadra
  • Publication number: 20200179710
    Abstract: The present disclosure relates to a capacity-expanding separated interface nerve electrode (SINE), which can be used to deliver a nerve conduction block to one or more nerves. The SINE can include a source electrode coupled to a waveform generator. The sour electrode can deliver an electrical neuromodulation signal (e.g., a direct current (DC) signal) to an ionically conductive medium. The SINE can also include a vessel holding the ionically conductive medium, which can include a material that facilitates a transformation of the electrical neuromodulation signal to an ionic neuromodulation signal with a high charge capacity. The SINE can also include a nerve interface that can deliver the ionic neuromodulation signal to a nerve. The SINE can be used in combination with a return electrode that is also coupled to the waveform generator.
    Type: Application
    Filed: May 24, 2018
    Publication date: June 11, 2020
    Inventors: Tina L. Vrabec, Jesse S. Wainright, Kevin L. Kilgore, Narendra Bhadra, Niloy Bhadra
  • Publication number: 20200155832
    Abstract: Systems and methods that deliver a continuous partial nerve conduction block are described. A waveform generator can configure one or more direct current (DC) waveforms to provide a continuous partial nerve conduction block. One or more electrodes can deliver the one or more DC waveforms to provide the partial block to the neural structure. Feedback can be provided to the waveform generator related to the partial block. The feedback includes monitoring a property associated with the partial block and altering a parameter associated with the one or more direct current waveforms in response to the property associated with the partial block.
    Type: Application
    Filed: May 24, 2018
    Publication date: May 21, 2020
    Inventors: Tina L. Vrabec, Kevin L. Kilgore, Niloy Bhadra, Laura Shaw, David Roberts, Narendra Bhadra
  • Patent number: 10617870
    Abstract: A method of blocking signal transmission through a nerve with reduced onset activity includes applying an HFAC to an axon of a nerve to block the transmission of signals through the axon. The method may also include applying a direct current (DC) to the axon, increasing the amplitude of the DC over time to a predetermined amplitude, applying the HFAC, and then decreasing the DC. The method may also include temporarily reducing the amplitude of the HFAC to permit the transmission of signals through the axon and subsequently increasing the amplitude to block transmission without triggering an onset response. The method may also include temporarily applying an unbalanced charge to the nerve and then balancing the charge over time.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 14, 2020
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Kevin L. Kilgore, Niloy Bhadra
  • Publication number: 20200100731
    Abstract: The present disclose relates to eliminating artifacts due to delivery of an electrical signal (e.g., for neural stimulation or nerve block) from neural recordings. An activating stimulus (AS) can be applied by at least one neural electrode located at a first position within a body or a preparation proximal to a neural structure. The AS includes an electrical waveform configured to affect (e.g., stimulate or block) conduction in the neural structure. A counter stimulus (CS) can be applied by at least one electrode located at a second position within the body or the preparation remote from the neural structure. The CS includes an electrical waveform configured with a timing parameter and an amplitude parameter selected based on a feature of the AS. Artifacts due to the AS can be blocked by the CS during the neural recordings.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 2, 2020
    Inventors: Niloy Bhadra, Kevin L. Kilgore, Thomas Eggens
  • Publication number: 20200001073
    Abstract: Devices and methods for blocking signal transmission through neural tissue. One step of a method includes placing a therapy delivery device into electrical communication with the neural tissue. The therapy delivery device includes an electrode contact having a high charge capacity material. A multi-phase direct current (DC) can be applied to the neural tissue without damaging the neural tissue. The multi-phase DC includes a cathodic DC phase and anodic DC phase that collectively produce a neural block and reduce the charge delivered by the therapy delivery device. The DC delivery can be combined with high frequency alternating current (HFAC) block to produce a system that provides effective, safe, long term block without inducing an onset response.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Inventors: Niloy Bhadra, Kevin L. Kilgore, Narendra Bhadra, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Publication number: 20200001078
    Abstract: The present disclosure relates to subcutaneous direct current (DC) nerve conduction block. A subcutaneous electrode can be implanted under a subject's skin between the subject's skin and a neural structure within the subject's body. The subcutaneous electrode can be coupled to a current generator. A DC can be configured by the current generator and delivered through the subcutaneous electrode to block conduction in the neural structure. The subcutaneous electrode eliminates an effect of an impedance of the subject's skin on the DC. The DC can be returned to the current generator by a return electrode.
    Type: Application
    Filed: October 17, 2017
    Publication date: January 2, 2020
    Inventors: Tina Vrabec, Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore
  • Publication number: 20190374779
    Abstract: A method of blocking signal transmission through a nerve with reduced onset activity includes applying an HFAC to an axon of a nerve to block the transmission of signals through the axon. The method may also include applying a direct current (DC) to the axon, increasing the amplitude of the DC over time to a predetermined amplitude, applying the HFAC, and then decreasing the DC. The method may also include temporarily reducing the amplitude of the HFAC to permit the transmission of signals through the axon and subsequently increasing the amplitude to block transmission without triggering an onset response. The method may also include temporarily applying an unbalanced charge to the nerve and then balancing the charge over time.
    Type: Application
    Filed: July 23, 2019
    Publication date: December 12, 2019
    Inventors: Kevin L. Kilgore, Niloy Bhadra
  • Patent number: 10441782
    Abstract: Devices and methods for blocking signal transmission through neural tissue. One step of a method includes placing a therapy delivery device into electrical communication with the neural tissue. The therapy delivery device includes an electrode contact having a high charge capacity material. A multi-phase direct current (DC) can be applied to the neural tissue without damaging the neural tissue. The multi-phase DC includes a cathodic DC phase and anodic DC phase that collectively produce a neural block and reduce the charge delivered by the therapy delivery device. The DC delivery can be combined with high frequency alternating current (HFAC) block to produce a system that provides effective, safe, long term block without inducing an onset response.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: October 15, 2019
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Niloy Bhadra, Kevin L. Kilgore, Narendra Bhadra, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Publication number: 20190269921
    Abstract: Described herein are systems and methods for the treatment of pain using electrical nerve conduction block (ENCB). Contrary to other methods of pain treatment, the ENCB can establish a direct block of neural activity, thereby eliminating the pain. Additionally, the ENCB can be administered without causing electrochemical damage. An example method can include: placing at least one electrode contact in electrical communication with a region of a subject's spinal cord; applying an electrical nerve conduction block (ENCB) to a nerve in the region through the at least one electrode contact; and blocking neural activity with the ENCB to reduce the pain or other unwanted sensation in the subject.
    Type: Application
    Filed: November 3, 2017
    Publication date: September 5, 2019
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L. Kilgore, Scott Lempka, Tina Vrabec, Manfred Franke