Patents by Inventor Kevin M. Monahan

Kevin M. Monahan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9466464
    Abstract: Methods, devices and systems for patterning of substrates using charged particle beams without photomasks and without a resist layer. Material can be removed from a substrate, as directed by a design layout database, localized to positions targeted by multiple, matched charged particle beams. Reducing the number of process steps, and eliminating lithography steps, in localized material removal has the dual benefit of reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Furthermore, highly localized, precision material removal allows for controlled variation of removal rate and enables creation of 3D structures or profiles. Local gas injectors and detectors, and local photon injectors and detectors, are local to corresponding ones of the columns, and can be used to facilitate rapid, accurate, targeted substrate processing.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: October 11, 2016
    Assignee: Multibeam Corporation
    Inventors: David K. Lam, Kevin M. Monahan, Michael C. Smayling, Theodore A. Prescop
  • Patent number: 9453281
    Abstract: Methods, devices and systems for patterning of substrates using charged particle beams without photomasks and without a resist layer. Material can be deposited onto a substrate, as directed by a design layout database, localized to positions targeted by multiple, matched charged particle beam columns. Reducing the number of process steps, and eliminating lithography steps, in localized material addition has the dual benefit of reducing manufacturing cycle time and increasing yield by lowering the probability of defect introduction. Furthermore, highly localized, precision material deposition allows for controlled variation of deposition rate and enables creation of 3D structures. Local gas injectors and detectors, and local photon injectors and detectors, are local to corresponding ones of the columns, and can be used to facilitate rapid, accurate, targeted, highly configurable substrate processing, advantageously using large arrays of said beam columns.
    Type: Grant
    Filed: June 21, 2015
    Date of Patent: September 27, 2016
    Assignee: Multibeam Corporation
    Inventors: Theodore A. Prescop, Kevin M. Monahan, David K. Lam, Michael C. Smayling
  • Patent number: 9207539
    Abstract: The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use write and inspection tools that share the same or substantially the same stage and the same or substantially the same designs for respective arrays of multiple charged particle beam columns, and that access the same design layout database to target and pattern or inspect features. By using design-matched charged particle beam tools, correlation of defectivity is preserved between inspection imaging and the design layout database. As a result, image-based defect identification and maskless design correction, of random and systematic errors, can be performed directly in the design layout database, enabling a fast yield ramp.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: December 8, 2015
    Assignee: Multibeam Corporation
    Inventors: David K. Lam, Kevin M. Monahan, Theodore A. Prescop, Cong Tran
  • Patent number: 9184027
    Abstract: The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use write and inspection tools that share the same or substantially the same stage and the same or substantially the same designs for respective arrays of multiple charged particle beam columns, and that access the same design layout database to target and pattern or inspect features. By using design-matched charged particle beam tools, correlation of defectivity is preserved between inspection imaging and the design layout database. As a result, image-based defect identification and maskless design correction, of random and systematic errors, can be performed directly in the design layout database, enabling a fast yield ramp.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: November 10, 2015
    Assignee: Multibeam Corporation
    Inventors: David K. Lam, Kevin M. Monahan, Theodore A. Prescop, Cong Tran
  • Patent number: 8999627
    Abstract: The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use write and inspection tools that share the same or substantially the same stage and the same or substantially the same designs for respective arrays of multiple charged particle beam columns, and that access the same design layout database to target and pattern or inspect features. By using design-matched charged particle beam tools, correlation of defectivity is preserved between inspection imaging and the design layout database. As a result, image-based defect identification and maskless design correction, of random and systematic errors, can be performed directly in the design layout database, enabling a fast yield ramp.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: April 7, 2015
    Assignee: Multibeam Corporation
    Inventors: David K. Lam, Kevin M. Monahan, Theodore A. Prescop, Cong Tran
  • Patent number: 8999628
    Abstract: The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use write and inspection tools that share the same or substantially the same stage and the same or substantially the same designs for respective arrays of multiple charged particle beam columns, and that access the same design layout database to target and pattern or inspect features. By using design-matched charged particle beam tools, correlation of defectivity is preserved between inspection imaging and the design layout database. As a result, image-based defect identification and maskless design correction, of random and systematic errors, can be performed directly in the design layout database, enabling a fast yield ramp.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: April 7, 2015
    Assignee: Multibeam Corporation
    Inventors: David K. Lam, Kevin M. Monahan, Theodore A. Prescop, Cong Tran
  • Patent number: 6211518
    Abstract: A system and method for controlling electron exposure on image specimens by adjusting a raster scan area in-between scan frame cycles. A small, zoomed-in, scan area and the surrounding area are flooded with positive charge for a number of frame cycles between scan frames to reduce the voltage differential between the scan area and surrounding area, thereby reducing the positive charge buildup which tends to obscure small features in scanned images. The peak current into a pixel element on the specimen is reduced by scanning the beam with a line period that is very short compared to regular video. Frames of image data may further be acquired non-sequentially, in arbitrarily programmable patterns. Alternatively, an inert gas can be injected into the scanning electron microscope at the point where the electron beam impinges the specimen to neutralize a charge build-up on the specimen by the ionization of the inert gas by the electron beam.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: April 3, 2001
    Assignee: Kla-Tencor Corporation
    Inventors: Neil Richardson, Farid Askary, Stefano E. Concina, Kevin M. Monahan, David L. Adler
  • Patent number: 5869833
    Abstract: A system and method for controlling electron exposure on image specimens by adjusting a raster scan area in-between scan frame cycles. A small, zoomed-in, scan area and the surrounding area are flooded with positive charge for a number of frame cycles between scan frames to reduce the voltage differential between the scan area and surrounding area, thereby reducing the positive charge buildup which tends to obscure small features in scanned images. The peak current into a pixel element on the specimen is reduced by scanning the beam with a line period that is very short compared to regular video. Frames of image data may further be acquired non-sequentially, in arbitrarily programmable patterns. Alternatively, an inert gas can be injected into the scanning electron microscope at the point where the electron beam impinges the specimen to neutralize a charge build-up on the specimen by the ionization of the inert gas by the electron beam.
    Type: Grant
    Filed: January 16, 1997
    Date of Patent: February 9, 1999
    Assignee: Kla-Tencor Corporation
    Inventors: Neil Richardson, Farid Askary, Stefano E. Concina, Kevin M. Monahan, David L. Adler
  • Patent number: 5493116
    Abstract: Improved techniques for imaging high-aspect-ratio structures such as contact holes utilize two signal detection sub-systems, one optimized for imaging at the top and another optimized for imaging at the base of submicrometer structures. These detection systems produce signals that can be combined in real-time to produce an image which resembles the "extended focus" images obtained with confocal optical microscopes. Unlike the confocal image, however, the resulting image has the inherent linearity and resolution characteristics of electron-beam technology. Using the new approach, the signal, rather than exhibiting a near-zero minimum at the base of the structure as is typical of the prior art, exhibits its maximum at the base of the structure, allowing high-precision measurement with no need for extrapolation.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: February 20, 1996
    Assignee: Metrologix, Inc.
    Inventors: Guillermo L. Toro-Lira, Alan H. Achilles, Nolan V. Frederick, Kevin M. Monahan, Philip R. Rigg
  • Patent number: 5302828
    Abstract: Improved scanning methods for use in a scanning particle beam microscop reduce the effects of surface charge accumulation, increasing linearity and precision. More particularly, signal distortion is reduced by scanning across an object along a line in a first direction to produce a first signal, scanning across the object along the identical line in an opposite, anti-parallel, direction to produce a second signal, and combining the first and second signals. This technique is referred to as scan reversal. Baseline drift is substantially canceled out of the resulting signal.
    Type: Grant
    Filed: December 3, 1992
    Date of Patent: April 12, 1994
    Assignee: Metrologix Corporation
    Inventor: Kevin M. Monahan
  • Patent number: 5155359
    Abstract: A scanning electron microscope is calibrated using an atomic scale microscope, such as a scanning tunneling microscope or atomic force microscope to permit accurate and precise deflection of the scanning electron beam.
    Type: Grant
    Filed: April 5, 1991
    Date of Patent: October 13, 1992
    Assignee: Metrologix, Inc.
    Inventor: Kevin M. Monahan
  • Patent number: 4972072
    Abstract: Circularly polarized light is used to detect an end point of a thin film layer. Collimated light is passed through a polarizing filter and a polarizing beam splitter resulting in light which is almost entirely linearly polarized in a first direction. This first direction polarized light is passed through a quarter wave retarder and is converted to circularly polarized light. The circularly polarized light is reflected off of a surface having a thin film layer and passes back through the quarter wave retarder. This reflected circularly polarized light is converted by the quarterwave retarder into linearly polarized light having a second direction. This second direction polarized light is easily isolated by passing it back through the beam splitter. The light may then be analyzed by end-point detection circuitry and the end-point of the film layer detected.
    Type: Grant
    Filed: January 17, 1990
    Date of Patent: November 20, 1990
    Assignee: Tritec Industries, Inc.
    Inventors: Hugo Hauser, Kevin M. Monahan