Patents by Inventor Kevin McFarlin

Kevin McFarlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170319853
    Abstract: Endovascular nerve monitoring devices and associated systems and methods are disclosed herein. A nerve monitoring system configured in accordance with a particular embodiment of the present technology can include a shaft having a proximal portion and a distal portion and a nerve monitoring assembly at the distal portion. The shaft is configured to locate the distal portion intravascularly at a treatment site. The nerve monitoring assembly can include a bipolar stimulation electrode array and a bipolar recording electrode array disposed distal to the bipolar stimulation electrode assembly.
    Type: Application
    Filed: May 12, 2017
    Publication date: November 9, 2017
    Inventors: Dwayne S. Yamasaki, Bryan Courtney, Wenjeng Li, Kevin Mauch, Kevin McFarlin, Gabriel Brennan, David Gannon, David Hobbins, Brian Kelly, Stephen Nash, Matthew Bonner, Sean Ward
  • Publication number: 20160287325
    Abstract: Endovascular nerve monitoring devices and associated systems and methods are disclosed herein. A nerve monitoring system configured in accordance with a particular embodiment of the present technology can include a shaft having a proximal portion and a distal portion and a nerve monitoring assembly at the distal portion. The shaft is configured to locate the distal portion intravascularly at a treatment site. The nerve monitoring assembly can include a bipolar stimulation electrode array and a bipolar recording electrode array disposed distal to the bipolar stimulation electrode assembly.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Inventors: Dwayne S. Yamasaki, Bryan Courtney, Wenjeng Li, Kevin Mauch, Kevin McFarlin, Gabriel Brennan, David Gannon, David Hobbins, Brian Kelly, Stephen Nash, Matthew Bonner, Sean Ward
  • Patent number: 9327123
    Abstract: Endovascular nerve monitoring devices and associated systems and methods are disclosed herein. A nerve monitoring system configured in accordance with a particular embodiment of the present technology can include a shaft having a proximal portion and a distal portion and a nerve monitoring assembly at the distal portion. The shaft is configured to locate the distal portion intravascularly at a treatment site. The nerve monitoring assembly can include a bipolar stimulation electrode array and a bipolar recording electrode array disposed distal to the bipolar stimulation electrode assembly.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: May 3, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Dwayne S. Yamasaki, Bryan Courtney, Wenjeng Li, Kevin Mauch, Kevin McFarlin, Gabriel Brennan, David Gannon, David Hobbins, Brian Kelly, Stephen Nash, Matthew Bonner, Sean Ward
  • Patent number: 8932312
    Abstract: A surgical cutting instrument for use with a drive motor, and related system and method, is described. The surgical cutting instrument includes an elongated drive member, a cutting tip secured to the drive member, a non-conductive coupling body adapted for connection to a motor assembly, a housing maintaining the coupling body, a fluid coupling assembly and an electrical connector for connection to a stimulating energy source. The electrical connector is in electrical communication with the cutting tip via an electrical pathway.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: January 13, 2015
    Assignee: Medtronic Xomed, Inc.
    Inventors: Kevin McFarlin, David Reinker, William C. Brunnett, Michael Ferrell
  • Patent number: 8758378
    Abstract: Surgical micro-resecting and evoked potential monitoring system and method. The system includes a micro-resecting instrument, handpiece, and evoked potential monitor. The instrument includes an outer tube forming a cutting window at which a cutting tip of an inner member is located. A hub assembly rotatably maintains the inner and outer members. An electrically non-conductive material covers a region of the outer tube, and wiring is connected to an exposed surface of the outer tube. The instrument defines a probe surface proximate the cutting window as part of an electrical pathway with the wiring. The hub assembly is powered by the handpiece, and the wiring is connected to the evoked potential monitor. Evoked potential monitoring is performed at the probe surface via stimulation energy delivered along the electrical pathway, and tissue/bone resection occurs with rotation of the cutting tip.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: June 24, 2014
    Inventors: Kevin McFarlin, David Reinker
  • Publication number: 20130282008
    Abstract: Surgical micro-resecting and evoked potential monitoring system and method. The system includes a micro-resecting instrument, handpiece, and evoked potential monitor. The instrument includes an outer tube forming a cutting window at which a cutting tip of an inner member is located. A hub assembly rotatably maintains the inner and outer members. An electrically non-conductive material covers a region of the outer tube, and wiring is connected to an exposed surface of the outer tube. The instrument defines a probe surface proximate the cutting window as part of an electrical pathway with the wiring. The hub assembly is powered by the handpiece, and the wiring is connected to the evoked potential monitor. Evoked potential monitoring is performed at the probe surface via stimulation energy delivered along the electrical pathway, and tissue/bone resection occurs with rotation of the cutting tip.
    Type: Application
    Filed: June 18, 2013
    Publication date: October 24, 2013
    Inventors: Kevin McFarlin, David Reinker
  • Patent number: 8465513
    Abstract: Surgical micro-resecting and evoked potential monitoring system and method. The system includes a micro-resecting instrument, handpiece, and evoked potential monitor. The instrument includes an outer tube forming a cutting window at which a cutting tip of an inner member is located. A hub assembly rotatably maintains the inner and outer members. An electrically non-conductive material covers a region of the outer tube, and wiring is connected to an exposed surface of the outer tube. The instrument defines a probe surface proximate the cutting window as part of an electrical pathway with the wiring. The hub assembly is powered by the handpiece, and the wiring is connected to the evoked potential monitor. Evoked potential monitoring is performed at the probe surface via stimulation energy delivered along the electrical pathway, and tissue/bone resection occurs with rotation of the cutting tip.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: June 18, 2013
    Assignee: Medtronic Xomed, Inc.
    Inventors: Kevin McFarlin, David Reinker
  • Publication number: 20130012973
    Abstract: Surgical micro-resecting and evoked potential monitoring system and method. The system includes a micro-resecting instrument, handpiece, and evoked potential monitor. The instrument includes an outer tube forming a cutting window at which a cutting tip of an inner member is located. A hub assembly rotatably maintains the inner and outer members. An electrically non-conductive material covers a region of the outer tube, and wiring is connected to an exposed surface of the outer tube. The instrument defines a probe surface proximate the cutting window as part of an electrical pathway with the wiring. The hub assembly is powered by the handpiece, and the wiring is connected to the evoked potential monitor. Evoked potential monitoring is performed at the probe surface via stimulation energy delivered along the electrical pathway, and tissue/bone resection occurs with rotation of the cutting tip.
    Type: Application
    Filed: September 11, 2012
    Publication date: January 10, 2013
    Applicant: MEDTRONIC XOMED, INC.
    Inventors: Kevin McFarlin, David Reinker
  • Publication number: 20120316590
    Abstract: A surgical cutting instrument for use with a drive motor, and related system and method, is described. The surgical cutting instrument includes an elongated drive member, a cutting tip secured to the drive member, a non-conductive coupling body adapted for connection to a motor assembly, a housing maintaining the coupling body, a fluid coupling assembly and an electrical connector for connection to a stimulating energy source. The electrical connector is in electrical communication with the cutting tip via an electrical pathway.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 13, 2012
    Applicant: Medtronic Xomed, Inc.
    Inventors: Kevin McFarlin, David Reinker, William C. Brunnett, Michael Ferrell
  • Patent number: 8262683
    Abstract: Surgical micro-resecting and evoked potential monitoring system and method. The system includes a micro-resecting instrument, handpiece, and evoked potential monitor. The instrument includes an outer tube forming a cutting window at which a cutting tip of an inner member is located. A hub assembly rotatably maintains the inner and outer members. An electrically non-conductive material covers a region of the outer tube, and wiring is connected to an exposed surface of the outer tube. The instrument defines a probe surface proximate the cutting window as part of an electrical pathway with the wiring. The hub assembly is powered by the handpiece, and the wiring is connected to the evoked potential monitor. Evoked potential monitoring is performed at the probe surface via stimulation energy delivered along the electrical pathway, and tissue/bone resection occurs with rotation of the cutting tip.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: September 11, 2012
    Assignee: Medtronic Xomed, Inc.
    Inventors: Kevin McFarlin, David Reinker
  • Patent number: 8241313
    Abstract: A surgical cutting instrument for use with a drive motor, and related system and method, is described. The surgical cutting instrument includes an elongated drive member, a cutting tip secured to the drive member, a non-conductive coupling body adapted for connection to a motor assembly, a housing maintaining the coupling body, a fluid coupling assembly and an electrical connector for connection to a stimulating energy source. The electrical connector is in electrical communication with the cutting tip via an electrical pathway.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: August 14, 2012
    Assignee: Medtronic Xomed, Inc.
    Inventors: Kevin McFarlin, David Reinker, William C. Brunnett, Michael Ferrell
  • Publication number: 20120004680
    Abstract: Surgical micro-resecting and evoked potential monitoring system and method. The system includes a micro-resecting instrument, handpiece, and evoked potential monitor. The instrument includes an outer tube forming a cutting window at which a cutting tip of an inner member is located. A hub assembly rotatably maintains the inner and outer members. An electrically non-conductive material covers a region of the outer tube, and wiring is connected to an exposed surface of the outer tube. The instrument defines a probe surface proximate the cutting window as part of an electrical pathway with the wiring. The hub assembly is powered by the handpiece, and the wiring is connected to the evoked potential monitor. Evoked potential monitoring is performed at the probe surface via stimulation energy delivered along the electrical pathway, and tissue/bone resection occurs with rotation of the cutting tip.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 5, 2012
    Applicant: MEDTRONIC XOMED, INC.
    Inventors: Kevin McFarlin, David Reinker
  • Patent number: 8016846
    Abstract: Surgical micro-resecting and evoked potential monitoring system and method. The system includes a micro-resecting instrument, handpiece, and evoked potential monitor. The instrument includes an outer tube forming a cutting window at which a cutting tip of an inner member is located. A hub assembly rotatably maintains the inner and outer members. An electrically non-conductive material covers a region of the outer tube, and wiring is connected to an exposed surface of the outer tube. The instrument defines a probe surface proximate the cutting window as part of an electrical pathway with the wiring. The hub assembly is powered by the handpiece, and the wiring is connected to the evoked potential monitor. Evoked potential monitoring is performed at the probe surface via stimulation energy delivered along the electrical pathway, and tissue/bone resection occurs with rotation of the cutting tip.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: September 13, 2011
    Assignee: Medtronic Xomed, Inc.
    Inventors: Kevin McFarlin, David Reinker
  • Publication number: 20100198219
    Abstract: A surgical cutting instrument for use with a drive motor, and related system and method, is described. The surgical cutting instrument includes an elongated drive member, a cutting tip secured to the drive member, a non-conductive coupling body adapted for connection to a motor assembly, a housing maintaining the coupling body, a fluid coupling assembly and an electrical connector for connection to a stimulating energy source. The electrical connector is in electrical communication with the cutting tip via an electrical pathway.
    Type: Application
    Filed: April 16, 2010
    Publication date: August 5, 2010
    Applicant: Medtronic Xomed, Inc.
    Inventors: Kevin McFarlin, David Reinker, William C. Brunnett, Michael Ferrell
  • Patent number: 7717932
    Abstract: A surgical cutting instrument for use with a drive motor, and related system and method, is described. The surgical cutting instrument includes an elongated drive member, a cutting tip secured to the drive member, a non-conductive coupling body adapted for connection to a motor assembly, a housing maintaining the coupling body, and an electrical connector for connection to a stimulating energy source. The electrical connector is in electrical communication with the cutting tip via an electrical pathway.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: May 18, 2010
    Assignee: Medtronic Xomed, Inc.
    Inventors: Kevin McFarlin, David Reinker, William C. Brunnett, Michael Ferrell
  • Publication number: 20070239187
    Abstract: A guard for use with a surgical cutting system. The guard includes a housing and wiring. The housing defines a longitudinal passageway, and is configured for releasable attachment to an instrument handpiece. The wiring is coupled to the housing and includes an electrically conductive wire and an insulative material. The wire defines opposing, first and second ends, with the first end being positioned within the passageway. The insulative material covers the wire apart from the first end such that the first end of the wire is exposed within the passageway. The first end of the wire establishes an electrical connection with a cutting tool shank upon placement within the passageway.
    Type: Application
    Filed: June 8, 2007
    Publication date: October 11, 2007
    Inventors: William Brunnett, Kevin McFarlin, Benjamin Rubin, Robert Vaccaro
  • Publication number: 20070100336
    Abstract: Surgical micro-resecting and evoked potential monitoring system and method. The system includes a micro-resecting instrument, handpiece, and evoked potential monitor. The instrument includes an outer tube forming a cutting window at which a cutting tip of an inner member is located. A hub assembly rotatably maintains the inner and outer members. An electrically non-conductive material covers a region of the outer tube, and wiring is connected to an exposed surface of the outer tube. The instrument defines a probe surface proximate the cutting window as part of an electrical pathway with the wiring. The hub assembly is powered by the handpiece, and the wiring is connected to the evoked potential monitor. Evoked potential monitoring is performed at the probe surface via stimulation energy delivered along the electrical pathway, and tissue/bone resection occurs with rotation of the cutting tip.
    Type: Application
    Filed: June 2, 2006
    Publication date: May 3, 2007
    Inventors: Kevin McFarlin, David Reinker
  • Publication number: 20070100334
    Abstract: A surgical cutting instrument for use with a drive motor, and related system and method, is described. The surgical cutting instrument includes an elongated drive member, a cutting tip secured to the drive member, a non-conductive coupling body adapted for connection to a motor assembly, a housing maintaining the coupling body, and an electrical connector for connection to a stimulating energy source. The electrical connector is in electrical communication with the cutting tip via an electrical pathway.
    Type: Application
    Filed: October 27, 2005
    Publication date: May 3, 2007
    Inventors: Kevin McFarlin, David Reinker, William Brunnett, Michael Ferrell
  • Publication number: 20040092992
    Abstract: A disposable battery powered rotary tissue cutting instrument for soft tissue removal includes a blade attached to a powered surgical handpiece. The blade comprises an elongate tubular outer member and an inner member rotatably disposed within the outer member to cut anatomical tissue. The handpiece contains a motor having a drive shaft coupled in driving engagement with the inner member and a battery unit for supplying electric current to rotate the drive shaft to effect rotation of the inner member within the outer member. The inner member is continuously rotated in one direction or is continuously oscillatorily rotated in forward and reverse directions. The instrument is disposable after single patient use and may include a use-limiting unit for automatically disabling the instrument to prevent its reuse after completion of a surgical procedure performed using the instrument on a single patient. The blade may be used for electric cautery.
    Type: Application
    Filed: October 23, 2002
    Publication date: May 13, 2004
    Inventors: Kenneth Adams, Earnest Ferrell, Kevin McFarlin