Patents by Inventor Kevin Richard Curtis

Kevin Richard Curtis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977230
    Abstract: A wearable display system includes one or more emissive micro-displays, e.g., micro-LED displays. The micro-displays may be monochrome micro-displays or full-color micro-displays. The micro-displays may include arrays of light emitters. Light collimators may be utilized to narrow the angular emission profile of light emitted by the light emitters. Where a plurality of emissive micro-displays is utilized, the micro-displays may be positioned at different sides of an optical combiner, e.g., an X-cube prism which receives light rays from different micro-displays and outputs the light rays from the same face of the cube. The optical combiner directs the light to projection optics, which outputs the light to an eyepiece that relays the light to a user's eye. The eyepiece may output the light to the user's eye with different amounts of wavefront divergence, to place virtual content on different depth planes.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: May 7, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Evgeni Poliakov, Jahja I. Trisnadi, Hyunsun Chung, Lionel Ernest Edwin, Howard Russell Cohen, Robert Blake Taylor, Andrew Ian Russell, Kevin Richard Curtis, Clinton Carlisle
  • Patent number: 11971549
    Abstract: Very high refractive index (n>2.2) lightguide substrates enable the production of 70° field of view eyepieces with all three color primaries in a single eyepiece layer. Disclosed herein are viewing optics assembly architectures that make use of such eyepieces to reduce size and cost, simplifying manufacturing and assembly, and better-accommodating novel microdisplay designs.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Kevin Richard Curtis, Vikramjit Singh, Kang Luo, Michal Beau Dennison Vaughn, Samarth Bhargava, Shuqiang Yang, Michael Nevin Miller, Frank Y. Xu, Kevin Messer, Robert D. Tekolste
  • Patent number: 11914150
    Abstract: A wearable display system includes a light projection system having one or more emissive microdisplays, e.g., micro-LED displays. The light projection system projects time-multiplexed left-eye and right-eye images, which pass through an optical router having a polarizer and a switchable polarization rotator. The optical router is synchronized with the generation of images by the light projection system to impart a first polarization to left-eye images and a second different polarization to right-eye images. Light of the first polarization is incoupled into an eyepiece having one or more waveguides for outputting light to one of the left and right eyes, while light of the second polarization may be incoupled into another eyepiece having one or more waveguides for outputting light to the other of the left and right eyes. Each eyepiece may output incoupled light with variable amounts of wavefront divergence, to elicit different accommodation responses from the user's eyes.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: February 27, 2024
    Assignee: MAGIC LEAP, INC.
    Inventors: Jahja I. Trisnadi, Hyunsun Chung, Lionel Ernest Edwin, Howard Russell Cohen, Robert Blake Taylor, Andrew Ian Russell, Kevin Richard Curtis, Clinton Carlisle
  • Publication number: 20240061249
    Abstract: Embodiments of this disclosure systems and methods for displays. In embodiments, a display system includes a light source configured to emit a first light, a lens configured to receive the first light, and an image generator configured receive the first light and emit a second light. The display system further includes a plurality of waveguides, where at least two of the plurality of waveguides include an in-coupling grating configured to selectively couple the second light. In some embodiments, the light source can comprise a single pupil light source having a reflector and a micro-LED array disposed in the reflector.
    Type: Application
    Filed: January 7, 2022
    Publication date: February 22, 2024
    Inventors: Kevin Richard CURTIS, Heidi Leising HALL, Jahja L. TRISNADI
  • Publication number: 20240036332
    Abstract: This disclosure describes a wearable display system configured to project light to the eye(s) of a user to display virtual (e.g., augmented reality) image content in a vision field of the user. The system can include light source(s) that output light, spatial light modulator(s) that modulate the light to provide the virtual image content, and an eyepiece configured to convey the modulated light toward the eye(s) of the user. The eyepiece can include waveguide(s) and a plurality of in-coupling optical elements arranged on or in the waveguide(s) to in-couple the modulated light received from the spatial light modulator(s) into the waveguide(s) to be guided toward the user's eye(s). The spatial light modulator(s) may be movable, and/or may include movable components, to direct different portions of the modulated light toward different ones of the in-coupling optical elements at different times.
    Type: Application
    Filed: October 10, 2023
    Publication date: February 1, 2024
    Inventors: Bradley Jay SISSOM, Kevin Richard CURTIS, Hui-Chuan CHENG, Miller Harry SCHUCK, III, Samarth BHARGAVA
  • Publication number: 20240012251
    Abstract: An optical device may include a wedge-shaped light turning element. The optical device can include a first surface that is parallel to a horizontal axis and a second surface opposite to the first surface that is inclined with respect to the horizontal axis by a wedge angle. The optical device may include a light module that includes a plurality of light emitters. The light module can be configured to combine light for the plurality of emitters. The optical device can further include a light input surface that is between the first and the second surfaces and is disposed with respect to the light module to receive light emitted from the plurality of emitters. The optical device may include an end reflector that is disposed on a side opposite the light input surface. The second surface may be inclined such that a height of the light input surface is less than a height of the side opposite the light input surface.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 11, 2024
    Inventors: Hui-Chuan Cheng, Hyunsun Chung, Jahja I. Trisnadi, Clinton Carlisle, Kevin Richard Curtis, Chulwoo Oh
  • Publication number: 20240012190
    Abstract: A method of reducing optical artifacts includes injecting a light beam generated by an illumination source into a polarizing beam splitter (PBS), reflecting a spatially defined portion of the light beam from a display panel, reflecting, at an interface in the PBS, the spatially defined portion of the light beam towards a projector lens, passing at least a portion of the spatially defined portion of the light beam through a circular polarizer disposed between the PBS and the projector lens, reflecting, by one or more elements of the projector lens, a return portion of the spatially defined portion of the light beam, and attenuating, at the circular polarizer, the return portion of the spatially defined portion of the light beam.
    Type: Application
    Filed: September 22, 2023
    Publication date: January 11, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Kevin Richard Curtis, Hui-Chuan Cheng, Paul M. Greco, William Hudson Welch, Eric C. Browy, Miller Harry Schuck, III, Bradley Jay Sissom
  • Patent number: 11835723
    Abstract: An optical device may include a wedge-shaped light turning element. The optical device can include a first surface that is parallel to a horizontal axis and a second surface opposite to the first surface that is inclined with respect to the horizontal axis by a wedge angle. The optical device may include a light module that includes a plurality of light emitters. The light module can be configured to combine light for the plurality of emitters. The optical device can further include a light input surface that is between the first and the second surfaces and is disposed with respect to the light module to receive light emitted from the plurality of emitters. The optical device may include an end reflector that is disposed on a side opposite the light input surface. The second surface may be inclined such that a height of the light input surface is less than a height of the side opposite the light input surface.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: December 5, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Hui-Chuan Cheng, Hyunsun Chung, Jahja I. Trisnadi, Clinton Carlisle, Kevin Richard Curtis, Chulwoo Oh
  • Patent number: 11828942
    Abstract: A viewing optics assembly comprising a spatial light modulator is configured to rotate the spatial light modulator.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 28, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Bradley Jay Sissom, Kevin Richard Curtis, Hui-Chuan Cheng, Miller Harry Schuck, III, Samarth Bhargava
  • Patent number: 11822112
    Abstract: An artifact mitigation system includes a projector assembly and a set of imaging optics optically coupled to the projector assembly. The artifact mitigation system also includes an eyepiece optically coupled to the set of imaging optics. The eyepiece includes a diffractive incoupling interface. The artifact mitigation system further includes an artifact prevention element disposed between the set of imaging optics and the eyepiece. The artifact prevention element includes a linear polarizer, a first quarter waveplate disposed adjacent the linear polarizer, and a color select component disposed adjacent the first quarter waveplate.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: November 21, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Kevin Richard Curtis, Hui-Chuan Cheng, Paul M. Greco, William Hudson Welch, Eric C. Browy, Miller Harry Schuck, III, Bradley Jay Sissom
  • Publication number: 20230280594
    Abstract: A method and system for increasing dynamic digitized wavefront resolution, i.e., the density of output beamlets, can include receiving a single collimated source light beam and producing multiple output beamlets spatially offset when out-coupled from a waveguide. The multiple output beamlets can be obtained by offsetting and replicating a collimated source light beam. Alternatively, the multiple output beamlets can be obtained by using a collimated incoming source light beam having multiple input beams with different wavelengths in the vicinity of the nominal wavelength of a particular color. The collimated incoming source light beam can be in-coupled into the eyepiece designed for the nominal wavelength. The input beams with multiple wavelengths take different paths when they undergo total internal reflection in the waveguide, which produces multiple output beamlets.
    Type: Application
    Filed: May 11, 2023
    Publication date: September 7, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Brian T. Schowengerdt, Kevin Richard Curtis, William Hudson Welch, Pierre St. Hilaire, Hui-Chuan Cheng
  • Publication number: 20230244082
    Abstract: An optical device may include a light turning element. The optical device can include a first surface that is parallel to a horizontal axis and a second surface opposite to the first surface. The optical device may include a light module that includes a plurality of light emitters. The light module can be configured to combine light for the plurality of emitters. The optical device can further include a light input surface that is between the first and the second surfaces and is disposed with respect to the light module to receive light emitted from the plurality of emitters. The optical device may include an end reflector that is disposed on a side opposite the light input surface. The light coupled into the light turning element may be reflected by the end reflector and/or reflected from the second surface towards the first surface.
    Type: Application
    Filed: January 27, 2023
    Publication date: August 3, 2023
    Inventors: Hui-Chuan Cheng, Hyunsun Chung, Jahja I. Trisnadi, Clinton Carlisle, Chulwoo Oh, Kevin Richard Curtis
  • Patent number: 11686944
    Abstract: A method and system for increasing dynamic digitized wavefront resolution, i.e., the density of output beamlets, can include receiving a single collimated source light beam and producing multiple output beamlets spatially offset when out-coupled from a waveguide. The multiple output beamlets can be obtained by offsetting and replicating a collimated source light beam. Alternatively, the multiple output beamlets can be obtained by using a collimated incoming source light beam having multiple input beams with different wavelengths in the vicinity of the nominal wavelength of a particular color. The collimated incoming source light beam can be in-coupled into the eyepiece designed for the nominal wavelength. The input beams with multiple wavelengths take different paths when they undergo total internal reflection in the waveguide, which produces multiple output beamlets.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: June 27, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Brian T. Schowengerdt, Kevin Richard Curtis, William Hudson Welch, Pierre St. Hilaire, Hui-Chuan Cheng
  • Patent number: 11567320
    Abstract: An optical device comprising may include a light turning element. The optical device can include a first surface that is parallel to a horizontal axis and a second surface opposite to the first surface. The optical device may include a light module that includes a plurality of light emitters. The light module can be configured to combine light for the plurality of emitters. The optical device can further include a light input surface that is between the first and the second surfaces and is disposed with respect to the light module to receive light emitted from the plurality of emitters. The optical device may include an end reflector that is disposed on a side opposite the light input surface. The light coupled into the light turning element may be reflected by the end reflector and/or reflected from the second surface towards the first surface.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: January 31, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Hui-Chuan Cheng, Hyunsun Chung, Jahja I. Trisnadi, Clinton Carlisle, Chulwoo Oh, Kevin Richard Curtis
  • Publication number: 20230018744
    Abstract: A beamsplitter can include a first surface with a diffractive optical element, a second surface normal to the first surface, and a beam splitting surface arranged at an angle to the second surface that is less than 45 degrees. The beamsplitter may be configured to illuminate the entire second surface in response to an input beam at the first surface.
    Type: Application
    Filed: September 22, 2022
    Publication date: January 19, 2023
    Inventors: Jahja Trisnadi, Pierre St. Hilaire, Hui-Chuan Cheng, Clinton Carlisle, Michael Anthony Klug, Kevin Richard Curtis
  • Publication number: 20230004005
    Abstract: An apparatus including a set of three illumination sources disposed in a first plane. Each of the set of three illumination sources is disposed at a position in the first plane offset from others of the set of three illumination sources by 120 degrees measured in polar coordinates. The apparatus also includes a set of three waveguide layers disposed adjacent the set of three illumination sources. Each of the set of three waveguide layers includes an incoupling diffractive element disposed at a lateral position offset by 180 degrees from a corresponding illumination source of the set of three illumination sources.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 5, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Kristina Uhlendorf, Kevin Richard Curtis, Robert D. Tekolste, Vikramjit Singh
  • Publication number: 20220381969
    Abstract: An artifact mitigation system includes a projector assembly and a set of imaging optics optically coupled to the projector assembly. The artifact mitigation system also includes an eyepiece optically coupled to the set of imaging optics. The eyepiece includes a diffractive incoupling interface. The artifact mitigation system further includes an artifact prevention element disposed between the set of imaging optics and the eyepiece. The artifact prevention element includes a linear polarizer, a first quarter waveplate disposed adjacent the linear polarizer, and a color select component disposed adjacent the first quarter waveplate.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 1, 2022
    Applicant: Magic Leap, Inc.
    Inventors: Kevin Richard Curtis, Hui-Chuan Cheng, Paul M. Greco, William Hudson Welch, Eric C. Browy, Miller Harry Schuck, III, Bradley Jay Sissom
  • Publication number: 20220342214
    Abstract: Techniques for artifact mitigation in an optical system are disclosed. Light associated with a world object is received at the optical system, which is characterized by a world side and a user side. Light associated with a virtual image is projected onto an eyepiece of the optical system, causing a portion of the light associated with the virtual image to propagate toward the user side and light associated with an artifact image to propagate toward the world side. A dimmer of the optical system positioned between the world side and the eyepiece is adjusted to reduce an intensity of the light associated with the artifact image impinging on the dimmer and an intensity of the light associated with the world object impinging on the dimmer.
    Type: Application
    Filed: July 12, 2022
    Publication date: October 27, 2022
    Applicant: Magic Leap, Inc.
    Inventors: Kevin Richard Curtis, Samarth Bhargava, Bradley Jay Sissom, Victor Kai Liu, Chulwoo Oh, Ravi Kumar Komanduri, Kevin Messer
  • Patent number: 11480861
    Abstract: Examples of light projector systems and methods of use. A method can include providing an optical device having a first surface, a second surface normal to the first surface, and a third surface arranged at an angle to the second surface. The third surface can be reflective to light of a first state and transmissive to light of a second state. An input beam having the first state can be normally incident on the first surface. A transmissive diffractive optical element on the first surface can convert the input beam into at least a first diffracted beam directed toward the third surface, where it is reflected by the third surface in a direction substantially parallel to the first surface. The reflected first diffracted beam can be modulated with image information using a spatial light modulator to produce a modulated light beam having the second state.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: October 25, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Jahja Trisnadi, Pierre St. Hilaire, Hui-Chuan Cheng, Clinton Carlisle, Michael Anthony Klug, Kevin Richard Curtis
  • Patent number: 11422364
    Abstract: Techniques for artifact mitigation in an optical system are disclosed. Light associated with a world object is received at the optical system, which is characterized by a world side and a user side. Light associated with a virtual image is projected onto an eyepiece of the optical system, causing a portion of the light associated with the virtual image to propagate toward the user side and light associated with an artifact image to propagate toward the world side. A dimmer of the optical system positioned between the world side and the eyepiece is adjusted to reduce an intensity of the light associated with the artifact image impinging on the dimmer and an intensity of the light associated with the world object impinging on the dimmer.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: August 23, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Kevin Richard Curtis, Samarth Bhargava, Bradley Jay Sissom, Victor Kai Liu, Chulwoo Oh, Ravi Kumar Komanduri, Kevin Messer