Patents by Inventor Khan M. Salam

Khan M. Salam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10763566
    Abstract: An electronic device may include a millimeter wave transceiver, a first antenna having a first resonating element at a first side of a substrate, and a second antenna having a second resonating element at a second side of the substrate. A first coplanar waveguide may convey millimeter wave signals between the transceiver and the first resonating element and a second coplanar waveguide may convey millimeter wave signals between the transceiver and the second resonating element. The first coplanar waveguide may be coupled to the first resonating element through the second coplanar waveguide. The second coplanar waveguide may be coupled to the second resonating element through the first coplanar waveguide. Ground conductors in the coplanar waveguides may form antenna ground planes for the first and second antennas while serving to maximize electromagnetic decoupling between the coplanar waveguides and thus isolation between the ports of the transceiver.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: September 1, 2020
    Assignee: Apple Inc.
    Inventors: Basim H. Noori, Matthew A. Mow, Simone Paulotto, Khan M. Salam
  • Patent number: 10476136
    Abstract: An electronic device may be provided with wireless circuitry, a conductive housing, and a display. The display may have an active area that displays image data and an inactive area that does not display image data. The active area may completely surround the inactive area at a front face of the device. A speaker port may be aligned with the inactive area and may emit sound through the inactive area. The wireless circuitry may include first and second antenna arrays. The first array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through the inactive area of the display. The second array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through a slot in a rear wall of the conductive housing. Control circuitry may perform beam steering using the first and second arrays.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 12, 2019
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Basim H. Noori, Khan M. Salam, Mattia Pascolini, Ming-Ju Tsai, Simone Paulotto, Travis A. Barbieri, Victor C. Lee, Xu Han
  • Patent number: 10263340
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more dual-frequency dual-polarization patch antennas. Each patch antenna may have a patch antenna resonating element that lies in a plane and a ground that lies in a different parallel plane. The patch antenna resonating element may have a first feed located along a first central axis and a second feed located along a second central axis that is perpendicular to the first central axis. The patch antenna resonating element may be rectangular, may be oval, or may have other shapes. A shorting pin may be located at an intersecting point between the first and second axes. The patch antennas may be used in beam steering arrays. The patch antennas may be used for wireless power transfer at microwave frequencies or other frequencies and may be used to support millimeter wave communications.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: April 16, 2019
    Assignee: Apple Inc.
    Inventors: Basim H. Noori, Khan M. Salam, Liang Han, Matthew A. Mow, Mattia Pascolini, Ruben Caballero, Thomas E. Biedka, Yi Jiang, Yuehui Ouyang
  • Patent number: 10211871
    Abstract: A removable case may have a body that is configured to receive an electronic device. The case may be coupled to the electronic device using wired and wireless paths. The case may include circuitry that receives wireless power from external equipment. The circuitry that receives the wireless power may receive wireless power at microwave frequencies. Received power may be supplied to the electronic device through wired and wireless paths. The removable case may also include circuitry that wirelessly communicates with external equipment. An array of antennas may be used to support beam steering. The array of antennas may support wireless communications in millimeter wave communications bands such as a communications band at 60 GHz or other extremely high frequency communications bands. The case and electronic device may have respective intermediate frequency antenna structures to allow intermediate frequency signals to be wirelessly conveyed between the case and device.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: February 19, 2019
    Assignee: Apple Inc.
    Inventors: Basim H. Noori, Khan M. Salam, Matthew A. Mow, Yi Jiang, Yuehui Ouyang
  • Publication number: 20190027808
    Abstract: An electronic device may be provided with wireless circuitry, a conductive housing, and a display. The display may have an active area that displays image data and an inactive area that does not display image data. The active area may completely surround the inactive area at a front face of the device. A speaker port may be aligned with the inactive area and may emit sound through the inactive area. The wireless circuitry may include first and second antenna arrays. The first array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through the inactive area of the display. The second array may be configured to transmit and receive wireless signals at frequencies between 10 GHz and 300 GHz through a slot in a rear wall of the conductive housing. Control circuitry may perform beam steering using the first and second arrays.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 24, 2019
    Inventors: Matthew A. Mow, Basim H. Noori, Khan M. Salam, Mattia Pascolini, Ming-Ju Tsai, Simone Paulotto, Travis A. Barbieri, Victor C. Lee, Xu Han
  • Publication number: 20190027802
    Abstract: An electronic device may include a millimeter wave transceiver, a first antenna having a first resonating element at a first side of a substrate, and a second antenna having a second resonating element at a second side of the substrate. A first coplanar waveguide may convey millimeter wave signals between the transceiver and the first resonating element and a second coplanar waveguide may convey millimeter wave signals between the transceiver and the second resonating element. The first coplanar waveguide may be coupled to the first resonating element through the second coplanar waveguide. The second coplanar waveguide may be coupled to the second resonating element through the first coplanar waveguide. Ground conductors in the coplanar waveguides may form antenna ground planes for the first and second antennas while serving to maximize electromagnetic decoupling between the coplanar waveguides and thus isolation between the ports of the transceiver.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 24, 2019
    Inventors: Basim H. Noori, Matthew A. Mow, Simone Paulotto, Khan M. Salam
  • Publication number: 20180115071
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more dual-frequency dual-polarization patch antennas. Each patch antenna may have a patch antenna resonating element that lies in a plane and a ground that lies in a different parallel plane. The patch antenna resonating element may have a first feed located along a first central axis and a second feed located along a second central axis that is perpendicular to the first central axis. The patch antenna resonating element may be rectangular, may be oval, or may have other shapes. A shorting pin may be located at an intersecting point between the first and second axes. The patch antennas may be used in beam steering arrays. The patch antennas may be used for wireless power transfer at microwave frequencies or other frequencies and may be used to support millimeter wave communications.
    Type: Application
    Filed: December 20, 2017
    Publication date: April 26, 2018
    Inventors: Basim H. Noori, Khan M. Salam, Liang Han, Matthew A. Mow, Mattia Pascolini, Ruben Caballero, Thomas E. Biedka, Yi Jiang, Yuehui Ouyang
  • Patent number: 9882282
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more dual-frequency dual-polarization patch antennas. Each patch antenna may have a patch antenna resonating element that lies in a plane and a ground that lies in a different parallel plane. The patch antenna resonating element may have a first feed located along a first central axis and a second feed located along a second central axis that is perpendicular to the first central axis. The patch antenna resonating element may be rectangular, may be oval, or may have other shapes. A shorting pin may be located at an intersecting point between the first and second axes. The patch antennas may be used in beam steering arrays. The patch antennas may be used for wireless power transfer at microwave frequencies or other frequencies and may be used to support millimeter wave communications.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: January 30, 2018
    Assignee: Apple Inc.
    Inventors: Basim H. Noori, Khan M. Salam, Liang Han, Matthew A. Mow, Mattia Pascolini, Ruben Caballero, Thomas E. Biedka, Yi Jiang, Yuehui Ouyang
  • Publication number: 20170170859
    Abstract: A removable case may have a body that is configured to receive an electronic device. The case may be coupled to the electronic device using wired and wireless paths. The case may include circuitry that receives wireless power from external equipment. The circuitry that receives the wireless power may receive wireless power at microwave frequencies. Received power may be supplied to the electronic device through wired and wireless paths. The removable case may also include circuitry that wirelessly communicates with external equipment. An array of antennas may be used to support beam steering. The array of antennas may support wireless communications in millimeter wave communications bands such as a communications band at 60 GHz or other extremely high frequency communications bands. The case and electronic device may have respective intermediate frequency antenna structures to allow intermediate frequency signals to be wirelessly conveyed between the case and device.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 15, 2017
    Applicant: Apple Inc.
    Inventors: Basim H. Noori, Khan M. Salam, Matthew A. Mow, Yi Jiang, Yuehui Ouyang
  • Publication number: 20170117754
    Abstract: An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more dual-frequency dual-polarization patch antennas. Each patch antenna may have a patch antenna resonating element that lies in a plane and a ground that lies in a different parallel plane. The patch antenna resonating element may have a first feed located along a first central axis and a second feed located along a second central axis that is perpendicular to the first central axis. The patch antenna resonating element may be rectangular, may be oval, or may have other shapes. A shorting pin may be located at an intersecting point between the first and second axes. The patch antennas may be used in beam steering arrays. The patch antennas may be used for wireless power transfer at microwave frequencies or other frequencies and may be used to support millimeter wave communications.
    Type: Application
    Filed: October 23, 2015
    Publication date: April 27, 2017
    Inventors: Basim H. Noori, Khan M. Salam, Liang Han, Matthew A. Mow, Mattia Pascolini, Ruben Caballero, Thomas E. Biedka, Yi Jiang, Yuehui Ouyang
  • Patent number: 6624695
    Abstract: High efficiency DC to RF conversion with use of active harmonic insertion is provided for power amplification over a wide dynamic range of input signal level. Specifically, a power amplifier device including at least a final amplification stage is operated to receive an input signal of a fundamental frequency. A drive signal is produced which includes a fundamental signal component of the fundamental frequency and at least one harmonic signal component of a harmonic frequency that is substantially an integer multiple of the fundamental frequency, wherein relative phase shift and relative amplitude of the components are controlled over at least an order of magnitude of dynamic range of the input signal. As the signal level of the input signal decreases (or increases), the desired proportion of signal levels is maintained between the components.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: September 23, 2003
    Assignee: Tropian, Inc.
    Inventors: John Sevic, Khan M. Salam
  • Publication number: 20030080813
    Abstract: High efficiency DC to RF conversion with use of active harmonic insertion is provided for power amplification over a wide dynamic range of input signal level. Specifically, a power amplifier device including at least a final amplification stage is operated to receive an input signal of a fundamental frequency. A drive signal is produced which includes a fundamental signal component of the fundamental frequency and at least one harmonic signal component of a harmonic frequency that is substantially an integer multiple of the fundamental frequency, wherein relative phase shift and relative amplitude of the components are controlled over at least an order of magnitude of dynamic range of the input signal. As the signal level of the input signal decreases (or increases), the desired proportion of signal levels is maintained between the components.
    Type: Application
    Filed: October 31, 2001
    Publication date: May 1, 2003
    Inventors: John Sevic, Khan M. Salam