Patents by Inventor Khin Swe Yin

Khin Swe Yin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10788610
    Abstract: A method for design and fabrication of holographic optical elements for a compact holographic sight is proposed. The method includes use of ray-trace software to design holographic elements having optical power using an intermediate hologram with parameters obtained through minimization of the merit function defining image quality.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: September 29, 2020
    Assignee: Luminit LLC
    Inventors: Dmitry Voloschenko, Engin B. Arik, Fedor Dimov, Kevin Yu, Khin Swe Yin, Neven Rakuljic
  • Patent number: 10451786
    Abstract: A method for design and fabrication of holographic optical elements for a compact holographic sight is proposed. The method includes use of ray-trace software to design holographic elements having optical power using an intermediate hologram with parameters obtained through minimization of the merit function defining image quality.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: October 22, 2019
    Assignee: Luminit, LLC
    Inventors: Dmitry Voloschenko, Engin B. Arik, Fedor Dimov, Kevin Yu, Khin Swe Yin, Neven Rakuljic
  • Publication number: 20190317261
    Abstract: A holographic substrate-guided wave-based see-through display can has a microdisplay, capable of emitting light in the form of an image. The microdisplay directs its output to a holographic optical element, capable of accepting the light in the form of an image. The microdisplay directs its output to a holographic optical element, capable of accepting the image from the microdisplay, and capable of transmitting the light. The holographic optical element couples its output to an elongate substrate, capable of accepting the light from the holographic lens at a first location, and transmitting the light along a length of the substrate by total internal reflection to a second location, the elongate substrate being capable of transmitting the accepted light from the second location.
    Type: Application
    Filed: March 18, 2019
    Publication date: October 17, 2019
    Applicant: Luminit, LLC
    Inventors: Fedor Dimov, Tin Aye, Kevin Yu, Svetlana Soboleva, Khin Swe Yin, Myo Kyaw, Dmitry Voloschenko
  • Patent number: 10274660
    Abstract: A holographic substrate-guided wave-based see-through display has a microdisplay, capable of emitting light in the form of an image. The microdisplay directs its output to a holographic optical element, capable of accepting the image from the microdisplay, and capable of transmitting the light. The holographic optical element couples its output to an elongate substrate, capable of accepting the light from the holographic optical element at a first location, and transmitting the light along a length of the substrate by internal reflection to a second location, the elongate substrate being capable of transmitting the accepted light from the second location. The substrate couples out what it receives to a transparent holographic optical element, capable of accepting the light transmitted from the substrate and transmitting it to a location outside of the holographic optical element as a viewable image.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: April 30, 2019
    Assignee: Luminit, LLC
    Inventors: Fedor Dimov, Tin Aye, Kevin Yu, Svetlana Soboleva, Khin Swe Yin, Myo Kyaw, Dmitry Voloschenko
  • Patent number: 10061069
    Abstract: A method for design and fabrication of holographic optical elements for a compact holographic sight is proposed. The method includes use of ray-trace software to design holographic elements having optical power using an intermediate hologram with parameters obtained through minimization of the merit function defining image quality.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: August 28, 2018
    Assignee: Luminit LLC
    Inventors: Dmitry Voloschenko, Engin B. Arik, Fedor Dimov, Kevin Yu, Khin Swe Yin, Neven Rakuljic
  • Patent number: 8976434
    Abstract: A collimator can be made of a compound holographic optical element made of three holographic optical elements. The first reflection holographic optical element will have recorded within it continuous lens configured to receive light from a diffuse light beam and diffract the received light as a first collimated light beam. The second reflection holographic optical element will have recorded within it a regular hologram that is configured to permit the light from the diffuse light source to transmit through it to reach the first reflection holographic element, the second reflection holographic element having within it a second holographically reflective structure configured to receive the first collimated light beam and diffract the first collimated light beam as a second collimated light beam. The third transmission holographic optical element is configured to receive the second collimated light beam and diffract it as a third holographic light beam.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: March 10, 2015
    Assignee: Luminit LLC
    Inventors: Fedor Dimov, Khin Swe Yin, Kevin Yu, Engin Arik, Dmitry Voloschenko
  • Publication number: 20120170090
    Abstract: A collimator can be made of a compound holographic optical element made of three holographic optical elements. The first reflection holographic optical element will have recorded within it continuous lens configured to receive light from a diffuse light beam and diffract the received light as a first collimated light beam. The second reflection holographic optical element will have recorded within it a regular hologram that is configured to permit the light from the diffuse light source to transmit through it to reach the first reflection holographic element, the second reflection holographic element having within it a second holographically reflective structure configured to receive the first collimated light beam and diffract the first collimated light beam as a second collimated light beam. The third transmission holographic optical element is configured to receive the second collimated light beam and diffract it as a third holographic light beam.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 5, 2012
    Applicant: Luminit LLC
    Inventors: Fedor Dimov, Khin Swe Yin (a/k/a Lillian Yin), Kevin Yu, Engin Arik, Dmitry Voloschenko
  • Publication number: 20100157400
    Abstract: A holographic substrate-guided wave-based see-through display can has a microdisplay, capable of emitting light in the form of an image. The microdisplay directs its output to a holographic lens, capable of accepting the light in the form of an image from the microdisplay, and capable of transmitting the accepted light in the form of an image. The holographic lens couples its output to an elongate transparent substrate, capable of accepting the light in the form of an image from the holographic lens at a first location, and transmitting the light in the form of an image along a length of the substrate by total internal reflection to a second location spaced from the first location, the elongate substrate being capable of transmitting the accepted light in the form of an image at the second location.
    Type: Application
    Filed: November 17, 2009
    Publication date: June 24, 2010
    Inventors: Fedor Dimov, Tin Aye, Kevin Yu, Svetlana Soboleva, Khin Swe Yin, Myo Kyaw, Dmitry Voloschenko
  • Patent number: 5702805
    Abstract: A hologram decal structure including a photopolymer hologram layer having hologram fringes recorded therein, a transparent pressure sensitive adhesive layer disposed on a first surface of the photopolymer hologram layer, and a transparent urethane coating disposed on a second surface of the photopolymer hologram layer, and techniques for making the hologram decal.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: December 30, 1997
    Assignee: Hughes Electronics
    Inventors: Khin Swe Yin, Kevin Yu, John E. Gunther