Patents by Inventor Khosrov D. Sadeghipour

Khosrov D. Sadeghipour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094848
    Abstract: Apparatuses and methods of differential driving of adjacent electrodes for low electromagnetic interference (EMI) for scanning a touch panel are described. One apparatus generates an in-phase drive signal and an opposite-phase drive signal and applies, at a substantially same time, the in-phase drive signal to a first transmitter electrode and the opposite-phase drive signal to a second transmitter electrode adjacent to the first transmitter electrode. The apparatus receives a first sense signal from a first receiver electrode and a second sense signal from a second receiver electrode adjacent to the first receiver electrode. The apparatus combines the first sense signal and the second sense signal to obtain a third sense signal. The third sense signal represents a first self capacitance associated with the first receiver electrode. The apparatus detects a presence of an object on a touch panel using at least the first self capacitance.
    Type: Application
    Filed: October 19, 2023
    Publication date: March 21, 2024
    Applicant: Cypress Semiconductor Corporation
    Inventors: Khosrov D. SADEGHIPOUR, Brendan LAWTON
  • Patent number: 11816287
    Abstract: Apparatuses and methods of differential driving of adjacent electrodes for low electromagnetic interference (EMI) for scanning a touch panel are described. One apparatus generates an in-phase drive signal and an opposite-phase drive signal and applies, at a substantially same time, the in-phase drive signal to a first transmitter electrode and the opposite-phase drive signal to a second transmitter electrode adjacent to the first transmitter electrode. The apparatus receives a first sense signal from a first receiver electrode and a second sense signal from a second receiver electrode adjacent to the first receiver electrode. The apparatus combines the first sense signal and the second sense signal to obtain a third sense signal. The third sense signal represents a first self capacitance associated with the first receiver electrode. The apparatus detects a presence of an object on a touch panel using at least the first self capacitance.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: November 14, 2023
    Assignee: Cypress Semiconductor Corporation
    Inventors: Khosrov D. Sadeghipour, Brendan Lawton
  • Publication number: 20230100570
    Abstract: Apparatuses and methods of differential driving of adjacent electrodes for low electromagnetic interference (EMI) for scanning a touch panel are described. One apparatus generates an in-phase drive signal and an opposite-phase drive signal and applies, at a substantially same time, the in-phase drive signal to a first transmitter electrode and the opposite-phase drive signal to a second transmitter electrode adjacent to the first transmitter electrode. The apparatus receives a first sense signal from a first receiver electrode and a second sense signal from a second receiver electrode adjacent to the first receiver electrode. The apparatus combines the first sense signal and the second sense signal to obtain a third sense signal. The third sense signal represents a first self capacitance associated with the first receiver electrode. The apparatus detects a presence of an object on a touch panel using at least the first self capacitance.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 30, 2023
    Applicant: Cypress Semiconductor Corporation
    Inventors: Khosrov D. Sadeghipour, Brendan Lawton
  • Patent number: 11531435
    Abstract: Technology directed to low-emissions touch controller in in-cell touch display systems is described. One in-cell touch controller includes a signal generator circuit that is configured to generate a sense signal according to a sensing function, the sense signal including a windowed sinusoidal waveform. The controller generates a transition signal to transition the in-cell touch display between a display function and the sensing function. The controller drives the sense signal and the transition signal on common voltage (VCOM) layer of electrodes during a touch scanning interval. During a display function interval an integrated display driver is configured to drive a first signal on the VCOM layer of electrodes during a display function interval.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: December 20, 2022
    Assignee: Cypress Semiconductor Corporation
    Inventors: Viktor Kremin, Oleksandr Pirogov, Jens Weber, Yarsolav Lek, Daniel O'Keeffe, Brendan Lawton, Khosrov D Sadeghipour, Gaurav Panchanan, Andrew Kinane
  • Publication number: 20220197435
    Abstract: Technology directed to low-emissions touch controller in in-cell touch display systems is described. One in-cell touch controller includes a signal generator circuit that is configured to generate a sense signal according to a sensing function, the sense signal including a windowed sinusoidal waveform. The controller generates a transition signal to transition the in-cell touch display between a display function and the sensing function. The controller drives the sense signal and the transition signal on common voltage (VCOM) layer of electrodes during a touch scanning interval. During a display function interval an integrated display driver is configured to drive a first signal on the VCOM layer of electrodes during a display function interval.
    Type: Application
    Filed: January 14, 2022
    Publication date: June 23, 2022
    Applicant: Cypress Semiconductor Corporation
    Inventors: Viktor Kremin, Oleksandr Pirogov, Jens Weber, Yarsolav Lek, Daniel O'Keeffe, Brendan Lawton, Khosrov D. Sadeghipour, Gaurav Panchanan, Andrew Kinane
  • Patent number: 11226706
    Abstract: Technology directed to low-emissions touch controller in in-cell touch display systems is described. One in-cell touch controller includes a signal generator circuit that is configured to generate a sense signal according to a sensing function, the sense signal including a windowed sinusoidal waveform. The controller generates a transition signal to transition the in-cell touch display between a display function and the sensing function. The controller drives the sense signal and the transition signal on common voltage (VCOM) layer of electrodes during a touch scanning interval. During a display function interval an integrated display driver is configured to drive a first signal on the VCOM layer of electrodes during a display function interval.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: January 18, 2022
    Assignee: Cypress Semiconductor Corporation
    Inventors: Viktor Kremin, Oleksandr Pirogov, Jens Weber, Yarsolav Lek, Daniel O'Keeffe, Brendan Lawton, Khosrov D Sadeghipour, Gaurav Panchanan, Andrew Kinane
  • Publication number: 20210216168
    Abstract: Technology directed to low-emissions touch controller in in-cell touch display systems is described. One in-cell touch controller includes a signal generator circuit that is configured to generate a sense signal according to a sensing function, the sense signal including a windowed sinusoidal waveform. The controller generates a transition signal to transition the in-cell touch display between a display function and the sensing function. The controller drives the sense signal and the transition signal on common voltage (VCOM) layer of electrodes during a touch scanning interval. During a display function interval an integrated display driver is configured to drive a first signal on the VCOM layer of electrodes during a display function interval.
    Type: Application
    Filed: September 18, 2020
    Publication date: July 15, 2021
    Applicant: Cypress Semiconductor Corporation
    Inventors: Viktor Kremin, Oleksandr Pirogov, Jens Weber, Yarsolav Lek, Daniel O'Keeffe, Brendan Lawton, Khosrov D. Sadeghipour, Gaurav Panchanan, Andrew Kinane