Patents by Inventor Kikurou Takemoto

Kikurou Takemoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7843040
    Abstract: A method of forming an iron-doped gallium nitride for a semi-insulating GaN substrate is provided. A substrate (1), such as a (0001)-cut sapphire substrate, is placed on a susceptor of a metalorganic hydrogen chloride vapor phase apparatus (11). Next, gaseous iron compound GFe from a source (13) for an iron compound, such as ferrocene, and hydrogen chloride gas G1HCl from a hydrogen chloride source (15) are caused to react with each other in a mixing container (16) to generate gas GFeComp of an iron-containing reaction product, such as iron chloride (FeCl2). In association with the generation, the iron-containing reaction product GFeComp, first substance gas GN containing elemental nitrogen from a nitrogen source (17), and second substance gas GGa containing elemental gallium are supplied to a reaction tube (21) to form iron-doped gallium nitride (23) on the substrate (1).
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: November 30, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Yoshiki Miura, Kikurou Takemoto, Fumitaka Sato
  • Patent number: 7518216
    Abstract: A method of forming an iron-doped gallium nitride for a semi-insulating GaN substrate is provided. A substrate 1, such as a sapphire substrate having the (0001) plane, is placed on a susceptor of a metalorganic hydrogen chloride vapor phase apparatus 11. Next, gaseous iron compound GFe from a source 13 for an iron compound, such as ferrocene, and hydrogen chloride gas G1HCl from a hydrogen chloride source 15 are caused to react with each other in a mixing container 16 to generate gas GFeComp of an iron-containing reaction product, such as iron chloride (FeCl2). In association with the generation, the iron-containing reaction product GFeComp, first substance gas GN containing elemental nitrogen from a nitrogen source 17, and second substance gas GGa containing elemental gallium are supplied to a reaction tube 21 to form iron-doped gallium nitride 23 on the substrate 1.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: April 14, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Yoshiki Miura, Kikurou Takemoto, Fumitaka Sato
  • Publication number: 20090079036
    Abstract: A method of forming an iron-doped gallium nitride for a semi-insulating GaN substrate is provided. A substrate (1), such as a (0001)-cut sapphire substrate, is placed on a susceptor of a metalorganic hydrogen chloride vapor phase apparatus (11). Next, gaseous iron compound GFe from a source (13) for an iron compound, such as ferrocene, and hydrogen chloride gas G1HCl from a hydrogen chloride source (15) are caused to react with each other in a mixing container (16) to generate gas GFeComp of an iron-containing reaction product, such as iron chloride (FeCl2). In association with the generation, the iron-containing reaction product GFeComp, first substance gas GN containing elemental nitrogen from a nitrogen source (17), and second substance gas GGa containing elemental gallium are supplied to a reaction tube (21) to form iron-doped gallium nitride (23) on the substrate (1).
    Type: Application
    Filed: December 2, 2008
    Publication date: March 26, 2009
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Yoshiki Miura, Kikurou Takemoto, Fumitaka Sato
  • Publication number: 20070292612
    Abstract: A metal-organic vaporizing and feeding apparatus includes: a retention vessel for retaining a metal-organic material; a bubbling gas feeding path connected to the retention vessel, for feeding bubbling gas to the metal-organic material; a metal-organic gas feeding path connected to the retention vessel, for feeding metal-organic gas generated in the retention vessel and dilution gas to a deposition chamber; a dilution gas feeding path connected to the metal-organic gas feeding path, for feeding the dilution gas to the metal-organic gas feeding path; a flow rate regulator provided in the bubbling gas feeding path, for regulating flow rate of the bubbling gas; a pressure regulator for regulating pressure of the dilution gas; and a sonic nozzle disposed in the metal-organic gas feeding path on a downstream side of a connecting position between the metal-organic gas feeding path and the dilution gas feeding path.
    Type: Application
    Filed: June 14, 2007
    Publication date: December 20, 2007
    Inventors: Masaki Ueno, Toshio Ueda, Takao Nakamura, Koichi Ishikawa, Ken Takahashi, Osamu Yasaku, Kazuo Ujiie, Kikurou Takemoto
  • Publication number: 20070215982
    Abstract: A method of forming an iron-doped gallium nitride for a semi-insulating GaN substrate is provided. A substrate 1, such as a sapphire substrate having the (0001) plane, is placed on a susceptor of a metalorganic hydrogen chloride vapor phase apparatus 11. Next, gaseous iron compound GFe from a source 13 for an iron compound, such as ferrocene, and hydrogen chloride gas G1HCl from a hydrogen chloride source 15 are caused to react with each other in a mixing container 16 to generate gas GFeComp of an iron-containing reaction product, such as iron chloride (FeCl2). In association with the generation, the iron-containing reaction product GFeComp, first substance gas GN containing elemental nitrogen from a nitrogen source 17, and second substance gas GGa containing elemental gallium are supplied to a reaction tube 21 to form iron-doped gallium nitride 23 on the substrate 1.
    Type: Application
    Filed: March 20, 2006
    Publication date: September 20, 2007
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Yoshiki Miura, Kikurou Takemoto, Fumitaka Sato
  • Publication number: 20070128359
    Abstract: There are disclosed a production apparatus for producing a gallium nitride film semiconductor by HVPE process, a cleaning apparatus for cleaning exhaust gas coming from the above apparatus and an overall production plant for producing a gallium nitride film semiconductor by HVPE process. Therein exhaust piping for exhaust gas in the production apparatus, introduction piping for the cleaning apparatus and exhaust gas piping which connects the production apparatus and the cleaning apparatus are each composed of an electroconductive corrosion-resistant material and are each electrically grounded, thereby surely preventing electrostatic charging due to friction between ammonium chloride powders in the exhaust gas and inside walls of exhaust gas piping, and markedly enhancing operational safety.
    Type: Application
    Filed: February 13, 2007
    Publication date: June 7, 2007
    Applicants: Japan Pionics Co., Ltd, Sumitomo Electric Industires, Ltd.
    Inventors: Kenji OTSUKA, Naoki Muranaga, Kikurou Takemoto
  • Patent number: 7195022
    Abstract: There are disclosed a production apparatus for producing a gallium nitride semiconductor film by HVPE process, a cleaning apparatus for cleaning exhaust gas coming from the above apparatus and an overall production plant for producing a gallium nitride semiconductor by HVPE process. Therein exhaust piping for exhaust gas in the production apparatus, introduction piping for the cleaning apparatus and exhaust gas piping which connects the production apparatus and the cleaning apparatus are each composed of an electroconductive corrosion-resistant material and are each electrically grounded, thereby surely preventing electrostatic charging due to friction between ammonium chloride powders in the exhaust gas and inside walls of exhaust gas piping, and markedly enhancing operational safety.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: March 27, 2007
    Assignees: Japan Pionics Co., Ltd., Sumitomo Electric Industries Ltd.
    Inventors: Kenji Otsuka, Naoki Muranaga, Kikurou Takemoto
  • Publication number: 20050163928
    Abstract: There are disclosed a production apparatus for producing a gallium nitride film semiconductor by HVPE process, a cleaning apparatus for cleaning exhaust gas coming from the above apparatus and an overall production plant for producing a gallium nitride film semiconductor by HVPE process. Therein exhaust piping for exhaust gas in the production apparatus, introduction piping for the cleaning apparatus and exhaust gas piping which connects the production apparatus and the cleaning apparatus are each composed of an electroconductive corrosion-resistant material and are each electrically grounded, thereby surely preventing electrostatic charging due to friction between ammonium chloride powders in the exhaust gas and inside walls of exhaust gas piping, and markedly enhancing operational safety.
    Type: Application
    Filed: March 16, 2005
    Publication date: July 28, 2005
    Applicants: Japan Pionics Co., Ltd, Sumitomo Electric Industries, Ltd.
    Inventors: Kenji Otsuka, Naoki Muranaga, Kikurou Takemoto
  • Publication number: 20020136671
    Abstract: There are disclosed a production apparatus for producing a gallium nitride film semiconductor by HVPE process, a cleaning apparatus for cleaning exhaust gas coming from the above apparatus and an overall production plant for producing a gallium nitride film semiconductor by HVPE process. Therein exhaust piping for exhaust gas in the production apparatus, introduction piping for the cleaning apparatus and exhaust gas piping which connects the production apparatus and the cleaning apparatus are each composed of an electroconductive corrosion-resistant material and are each electrically grounded, thereby surely preventing electrostatic charging due to friction between ammonium chloride powders in the exhaust gas and inside walls of exhaust gas piping, and markedly enhancing operational safety.
    Type: Application
    Filed: December 20, 2001
    Publication date: September 26, 2002
    Applicant: Japan Pionics Co., Ltd
    Inventors: Kenji Otsuka, Naoki Muranaga, Kikurou Takemoto
  • Patent number: 6387722
    Abstract: The present invention provides an epitaxial wafer comprising a (111) substrate of a semiconductor having cubic crystal structure, a first GaN layer having a thickness of 60 nanometers or more, a second GaN layer having a thickness of 0.1 &mgr;m or more and a method for preparing it.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: May 14, 2002
    Assignee: Sumitomo Electric Industries, LTD
    Inventors: Kensaku Motoki, Masato Matsushima, Katsushi Akita, Mitsuru Shimazu, Kikurou Takemoto, Hisashi Seki, Akinori Koukitu
  • Patent number: 6270587
    Abstract: The present invention provides an epitaxial wafer comprising a (111) substrate of a semiconductor having cubic crystal structure, a first GaN layer having a thickness of 60 nanometers or more, a second GaN layer having a thickness of 0.1 &mgr;m or more and a method for preparing it.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: August 7, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kensaku Motoki, Masato Matsushima, Katsushi Akita, Mitsuru Shimazu, Kikurou Takemoto, Hisashi Seki, Akinori Koukitu
  • Patent number: 5843590
    Abstract: A high performance epitaxial wafer which is useful, for example in a light emitting device is produced with a buffer layer. The epitaxial wafer has a substrate of a compound semiconductor selected from a group consisting of GaAs, GaP, InAs and InP. The buffer layer of GaN is grown on the substrate to a thickness within the range of 10 nm to 80 nm. An epitaxial layer of GaN is formed on the buffer layer. The buffer layer is grown at a first temperature by organic metal chloride vapor phase epitaxy, while the epitaxial layer is grown at a second temperature, which is higher than the first temperature, by the organic metal chloride vapor phase epitaxy.
    Type: Grant
    Filed: December 19, 1995
    Date of Patent: December 1, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshiki Miura, Keiichiro Fujita, Kikurou Takemoto, Masato Matsushima, Hideki Matsubara, Shigenori Takagishi, Hisashi Seki, Akinori Koukitu