Patents by Inventor Kimberly A. Nelson

Kimberly A. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932706
    Abstract: Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with surprisingly low mechanical energy input. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: March 19, 2024
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Kimberly Nelson, Theodora Retsina, Vesa Pylkkanen, Ryan O'Connor
  • Patent number: 11905341
    Abstract: The present invention provides a process for producing a nanocellulose material, comprising: fractionating a lignocellulosic biomass feedstock in the presence of a solvent for lignin and water, but no acid catalyst, to generate cellulose-rich solids; and then mechanically treating the cellulose-rich solids to form a nanocellulose material comprising cellulose nanofibrils and/or cellulose nanocrystals. Many organic or inorganic solvents are possible. In some embodiments, the solvent for lignin is an oxygenated organic compound, such as a C1-C18 alcohol, e.g. ethanol, ethylene glycol, propanol, propanediol, glycerol, butanol, or butanediol. The solvent for lignin may be an aromatic alcohol, such as phenol, cresol, or benzyl alcohol. The solvent for lignin may be a ketone, an aldehyde, or an ether, such as methyl ethyl ketone or diethyl ether. The solvent for lignin may be a non-oxygenated alkane, olefin, or aromatic hydrocarbon. In some embodiments, the solvent for lignin is an ionic liquid.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: February 20, 2024
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Kimberly Nelson, Theodora Retsina, Vesa Pylkkanen, Ryan O'Connor
  • Patent number: 11834523
    Abstract: Some variations provide a new nanolignocellulose composition comprising, on a bone-dry, ash-free, and acetyl-free basis, from 35 wt % to 80 wt % cellulose nanofibrils, cellulose microfibrils, or a combination thereof, from 15 wt % to 45 wt % lignin, and from 5 wt % to 20 wt % hemicelluloses. The hemicelluloses may contain xylan or mannan as the major component. Novel properties arise from the hemicellulose content that is intermediate between high hemicellulose content of raw biomass and low hemicellulose content of conventional nanocellulose. The nanolignocellulose composition is hydrophobic due to the presence of lignin. Processes for making and using the nanolignocellulose compositions are also described.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: December 5, 2023
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Kimberly Nelson, Theodora Retsina
  • Patent number: 11827771
    Abstract: An oleophilic and hydrophobic nanocellulose material is disclosed herein, for nanocellulose sponges and other applications. The oleophilic and hydrophobic nanocellulose material comprises lignin-coated cellulose nanofibrils and/or lignin-coated cellulose nanocrystals. In various embodiments, the nanocellulose material is in the form of a 2D coating or layer, or a 3D object (e.g., foam or aerogel). The nanocellulose material may be disposed onto a scaffold.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: November 28, 2023
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Theodora Retsina, Kimberly Nelson
  • Patent number: 11795345
    Abstract: Processes disclosed are capable of converting biomass into high-crystallinity, hydrophobic cellulose. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and depositing lignin onto cellulose fibers to produce lignin-coated cellulose materials (such as dissolving pulp). The crystallinity of the cellulose material may be 80% or higher, translating into good reinforcing properties for composites. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the hydrophobic cellulose to form completely renewable composites.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: October 24, 2023
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Kimberly Nelson, Theodora Retsina, Vesa Pylkkanen, Ryan O'Connor
  • Patent number: 11795303
    Abstract: This disclosure provides a polymer composite including a polymer, nanocellulose, and a compatibilizer, wherein the nanocellulose comprises cellulose nanocrystals and/or cellulose nanofibrils, and wherein the compatibilizer comprises a maleated polymer. In some embodiments, the nanocellulose includes lignin-coated nanocellulose. The polymer may be selected from polyethylene, polypropylene, polystyrene, polylactide, or poly(ethylene terephthalate). The maleated polymer may be selected from maleated polyethylene, maleated polypropylene, maleated polystyrene, maleated polylactide, or maleated poly(ethylene terephthalate.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: October 24, 2023
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Asis Kumar Banerjie, Kimberly Nelson
  • Publication number: 20230272259
    Abstract: This disclosure provides drilling fluids and additives as well as fracturing fluids and additives that contain cellulose nanofibers and/or cellulose nanocrystals. In some embodiments, hydrophobic nanocellulose is provided which can be incorporated into oil-based fluids and additives. These water-based or oil-based fluids and additives may further include lignosulfonates and other biomass-derived components. Also, these water-based or oil-based fluids and additives may further include enzymes. The drilling and fracturing fluids and additives described herein may be produced using the AVAP® process technology to produce a nanocellulose precursor, followed by low-energy refining to produce nanocellulose for incorporation into a variety of drilling and fracturing fluids and additives.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Jean-Pierre MONCLIN, Kimberly NELSON, Theodora RETSINA
  • Publication number: 20230242715
    Abstract: Improved processes and systems are disclosed for making masterbatches of particulates to be incorporated into polymers. In some variations, a process for making a particulate masterbatch comprises the sequential steps of: providing particulates; conveying an aqueous polymer latex and the particulates to a mixing unit, thereby generating a particulate-latex mixture comprising water; conveying the particulate-latex mixture to a homogenizer; conveying the homogenized particulate-latex mixture to a centrifuge to remove a first portion of water; and then conveying the dewatered and homogenized particulate-latex mixture to a screw mixer configured to remove a second portion of water, thereby generating a particulate masterbatch. Other variations employ polymer solids rather than a polymer latex. The processes and systems enable higher energy efficiency, more robust operability that minimizes process fouling, and exceptional particulate dispersion within the masterbatch.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 3, 2023
    Inventor: Kimberly NELSON
  • Publication number: 20230220118
    Abstract: A composition comprising nanocellulose is disclosed, wherein the nanocellulose contains very low or essentially no sulfur content. The nanocellulose may be in the form of cellulose nanocrystals, cellulose nanofibrils, or both. The nanocellulose is characterized by a crystallinity of at least 80%, an onset of thermal decomposition of 300° F. or higher, and a low light transmittance over the range 400-700 nm. Other variations provide a composition comprising lignin-coated hydrophobic nanocellulose, wherein the nanocellulose contains very low or essentially no sulfur content. Some variations provide a composition comprising nanocellulose, wherein the nanocellulose contains about 0.1 wt % equivalent sulfur content, or less, as SO4 groups chemically or physically bound to the nanocellulose. In some embodiments, the nanocellulose contains essentially no hydrogen atoms (apart from hydrogen structurally contained in nanocellulose itself) bound to the nanocellulose.
    Type: Application
    Filed: January 4, 2023
    Publication date: July 13, 2023
    Inventors: Theodora RETSINA, Kimberly NELSON
  • Publication number: 20230203280
    Abstract: The disclosed technology provides improved compositions and methods for dispersion and drying of nanocellulose, for polymer composites and other systems. Some variations provide a nanocellulose-dispersion concentrate comprising nanocellulose and a dispersion/drying agent selected for compatibility with the nanocellulose and with the nanocellulose-containing composite product, wherein the dispersion/drying agent is selected from the group consisting of waxes, polyolefins, olefin-maleic anhydride copolymers, olefin-acrylic acid copolymers, polyols, fatty acids, fatty alcohols, polyol-glyceride esters, polydimethylsiloxanes, polydimethylsiloxane-alkyl esters, polyacrylamides, starches, cellulose derivatives, particulates, and combinations or reaction products thereof, and wherein the nanocellulose-dispersion concentrate is in solid form (e.g., a powder) or liquid form. Other variations provide a nanocellulose-dispersion masterbatch (e.g.
    Type: Application
    Filed: December 28, 2022
    Publication date: June 29, 2023
    Inventor: Kimberly NELSON
  • Patent number: 11674071
    Abstract: This disclosure provides drilling fluids and additives as well as fracturing fluids and additives that contain cellulose nanofibers and/or cellulose nanocrystals. In some embodiments, hydrophobic nanocellulose is provided which can be incorporated into oil-based fluids and additives. These water-based or oil-based fluids and additives may further include lignosulfonates and other biomass-derived components. Also, these water-based or oil-based fluids and additives may further include enzymes. The drilling and fracturing fluids and additives described herein may be produced using the AVAP® process technology to produce a nanocellulose precursor, followed by low-energy refining to produce nanocellulose for incorporation into a variety of drilling and fracturing fluids and additives.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: June 13, 2023
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Jean-Pierre Monclin, Kimberly Nelson, Theodora Retsina
  • Publication number: 20230071816
    Abstract: Nanocellulose dispersion compositions containing a partitioning agent and a nanocellulose, and methods of making the nanocellulose dispersion compositions, are disclosed. These nanocellulose dispersion compositions can be used in tire formulations with carbon black and a suitable elastomer to produce articles of manufacture for use in tire and tread applications.
    Type: Application
    Filed: February 18, 2021
    Publication date: March 9, 2023
    Applicants: BIRLA CARBON U.S.A., INC., GRANBIO INTELLECTUAL PROPERTY HOLDINGS, LLC
    Inventors: Charles R. HERD, Zachary A. COMBS, Lewis B. TUNNICLIFFE, Kimberly NELSON, Shaobo PAN
  • Publication number: 20230055478
    Abstract: An oleophilic and hydrophobic nanocellulose material is disclosed herein, for nanocellulose sponges and other applications. The oleophilic and hydrophobic nanocellulose material comprises lignin-coated cellulose nanofibrils and/or lignin-coated cellulose nanocrystals. In various embodiments, the nanocellulose material is in the form of a 2D coating or layer, or a 3D object (e.g., foam or aerogel). The nanocellulose material may be disposed onto a scaffold.
    Type: Application
    Filed: September 6, 2022
    Publication date: February 23, 2023
    Inventors: Theodora RETSINA, Kimberly NELSON
  • Patent number: 11572418
    Abstract: A composition comprising nanocellulose is disclosed, wherein the nanocellulose contains very low or essentially no sulfur content. The nanocellulose may be in the form of cellulose nanocrystals, cellulose nanofibrils, or both. The nanocellulose is characterized by a crystallinity of at least 80%, an onset of thermal decomposition of 300° F. or higher, and a low light transmittance over the range 400-700 nm. Other variations provide a composition comprising lignin-coated hydrophobic nanocellulose, wherein the nanocellulose contains very low or essentially no sulfur content. Some variations provide a composition comprising nanocellulose, wherein the nanocellulose contains about 0.1 wt % equivalent sulfur content, or less, as SO4 groups chemically or physically bound to the nanocellulose. In some embodiments, the nanocellulose contains essentially no hydrogen atoms (apart from hydrogen structurally contained in nanocellulose itself) bound to the nanocellulose.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: February 7, 2023
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Theodora Retsina, Kimberly Nelson
  • Publication number: 20230002972
    Abstract: The present invention provides a pulp product (e.g., paper) comprising cellulose and nanocellulose, wherein the nanocellulose is derived from the cellulose in a mechanical and/or chemical step that is separate from the main pulping process. The pulping process may be thermomechanical pulping or hydrothermal-mechanical pulping, for example. The pulp product is stronger and smoother with the presence of the nanocellulose. The nanocellulose further can function as a retention aid, for a step of forming the pulp product (e.g., in a paper machine). Other embodiments provide a corrugated medium pulp composition comprising cellulose pulp and nanocellulose, wherein the nanocellulose includes cellulose nanofibrils and/or cellulose nanocrystals and the nanocellulose may be hydrophobic. The nanocellulose improves the strength properties of the corrugated medium. In some embodiments, the cellulose pulp is a GreenBox+® pulp and the nanocellulose is derived from the AVAP® process.
    Type: Application
    Filed: June 10, 2022
    Publication date: January 5, 2023
    Inventors: Theodora RETSINA, Kimberly NELSON, Lee HILL, Vesa PYLKKANEN, Timothy J. GALLIFORD
  • Publication number: 20220331432
    Abstract: In some variations, the invention provides a process for producing a microcrystalline cellulose material, comprising: fractionating lignocellulosic biomass feedstock in the presence of an acid, a solvent for lignin, and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; chemically and/or mechanically treating the cellulose-rich solids to form microcrystalline cellulose having an average crystallinity of at least 60%; and recovering the microcrystalline cellulose as a pharmaceutical excipient. The pharmaceutical excipient may function as an antiadherent, a binder, a coating, or a disintegrant. In some embodiments, the pharmaceutical excipient further comprises a lignin-derived lubricant, glidant, sorbent, preservative, or other component. The pharmaceutical excipient may be present in a pill, tablet, capsule, powder, slurry, or other pharmaceutically effective and acceptable form.
    Type: Application
    Filed: May 9, 2022
    Publication date: October 20, 2022
    Inventors: Kimberly NELSON, Theodora RETSINA, Vesa PYLKKANEN
  • Patent number: 11359334
    Abstract: The present invention provides a pulp product (e.g., paper) comprising cellulose and nanocellulose, wherein the nanocellulose is derived from the cellulose in a mechanical and/or chemical step that is separate from the main pulping process. The pulping process may be thermomechanical pulping or hydrothermal-mechanical pulping, for example. The pulp product is stronger and smoother with the presence of the nanocellulose. The nanocellulose further can function as a retention aid, for a step of forming the pulp product (e.g., in a paper machine). Other embodiments provide a corrugated medium pulp composition comprising cellulose pulp and nanocellulose, wherein the nanocellulose includes cellulose nanofibrils and/or cellulose nanocrystals and the nanocellulose may be hydrophobic. The nanocellulose improves the strength properties of the corrugated medium. In some embodiments, the cellulose pulp is a GreenBox+® pulp and the nanocellulose is derived from the AVAP® process.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: June 14, 2022
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Theodora Retsina, Kimberly Nelson, Lee Hill, Vesa Pylkkanen, Timothy J. Galliford
  • Patent number: 11324830
    Abstract: In some variations, the invention provides a process for producing a microcrystalline cellulose material, comprising: fractionating lignocellulosic biomass feedstock in the presence of an acid, a solvent for lignin, and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; chemically and/or mechanically treating the cellulose-rich solids to form microcrystalline cellulose having an average crystallinity of at least 60%; and recovering the microcrystalline cellulose as a pharmaceutical excipient. The pharmaceutical excipient may function as an antiadherent, a binder, a coating, or a disintegrant. In some embodiments, the pharmaceutical excipient further comprises a lignin-derived lubricant, glidant, sorbent, preservative, or other component. The pharmaceutical excipient may be present in a pill, tablet, capsule, powder, slurry, or other pharmaceutically effective and acceptable form.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: May 10, 2022
    Assignee: GranBio Intellectual Property Holdings, LLC
    Inventors: Kimberly Nelson, Theodora Retsina, Vesa Pylkkanen
  • Publication number: 20220127788
    Abstract: The present invention allows the production of nanocellulose in dry form, enabling incorporation into a wide variety of end-use applications. Some variations provide a nanocellulose-slurry dewatering system comprising: a nanocellulose slurry feed sub-system; a pre-concentration unit (e.g., a centrifuge) to remove at least a portion of the water from the nanocellulose slurry; an inlet for a dispersion/drying agent; a twin-screw extruder in flow communication with the nanocellulose slurry feed sub-system, wherein the twin-screw extruder intimately mixes the nanocellulose slurry and the dispersion/drying agent, wherein the twin-screw extruder shears the nanocellulose slurry, and wherein the twin-screw extruder is configured with one or more extruder vents to remove water from the nanocellulose slurry; and an extruder outlet for recovering a nanocellulose-dispersion concentrate. A milling device may be employed to generate a fine powder of the nanocellulose-dispersion concentrate.
    Type: Application
    Filed: March 22, 2020
    Publication date: April 28, 2022
    Inventor: Kimberly NELSON
  • Publication number: 20220127382
    Abstract: The present invention provides a process for producing a nanocellulose material, comprising: fractionating a lignocellulosic biomass feedstock in the presence of a solvent for lignin and water, but no acid catalyst, to generate cellulose-rich solids; and then mechanically treating the cellulose-rich solids to form a nanocellulose material comprising cellulose nanofibrils and/or cellulose nanocrystals. Many organic or inorganic solvents are possible. In some embodiments, the solvent for lignin is an oxygenated organic compound, such as a C1-C18 alcohol, e.g. ethanol, ethylene glycol, propanol, propanediol, glycerol, butanol, or butanediol. The solvent for lignin may be an aromatic alcohol, such as phenol, cresol, or benzyl alcohol. The solvent for lignin may be a ketone, an aldehyde, or an ether, such as methyl ethyl ketone or diethyl ether. The solvent for lignin may be a non-oxygenated alkane, olefin, or aromatic hydrocarbon. In some embodiments, the solvent for lignin is an ionic liquid.
    Type: Application
    Filed: January 7, 2022
    Publication date: April 28, 2022
    Inventors: Kimberly NELSON, Theodora RETSINA, Vesa PYLKKANEN, Ryan O'CONNOR