Patents by Inventor Kipp David Yeakel

Kipp David Yeakel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9791637
    Abstract: A method of terminating an optical fiber involves providing a ferrule having a front end, a rear end, a ferrule bore extending between the front and rear ends, and a bonding agent disposed in at least a portion of the ferrule bore. The method also involves applying energy to heat the bonding agent. An end section of an optical fiber is inserted into the ferrule bore and through the bonding agent when the bonding agent is heated. The end section of the optical fiber includes a primary coating prior to insertion into the ferrule bore. During insertion of the end section of the optical fiber through the bonding agent, the heated bonding agent thermally removes at least a portion of the primary coating during so that the optical fiber can be secured in the ferrule bore with the bonding agent.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: October 17, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Jeffrey Dean Danley, Robert Bruce Elkins, II, Darrin Max Miller, Dennis Craig Morrison, Kipp David Yeakel
  • Patent number: 9541705
    Abstract: An optical fiber includes a glass fiber, having a cladding and core, surrounded by a polymer coating. Some of the coating is removed by a laser beam so that the optical fiber comprises a first lengthwise portion covered by the coating and a second lengthwise portion where the coating is not present on at least ninety-five (95) percent of an exterior surface of the second lengthwise portion. A microstructure of the polymer coating, adjacent to the second lengthwise portion on the first lengthwise portion, tapers at an angle such that a thickness of the polymer coating decreases toward the second lengthwise portion as a function of proximity to the second lengthwise portion. The optical fiber may also be optionally cleaved with the laser beam.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 10, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Jeffrey Dean Danley, Robert Bruce Elkins, II, Darrin Max Miller, Zhaoxu Tian, Stephan T Toepper, Kipp David Yeakel
  • Publication number: 20150301292
    Abstract: A method of terminating an optical fiber involves providing a ferrule having a front end, a rear end, a ferrule bore extending between the front and rear ends, and a bonding agent disposed in at least a portion of the ferrule bore. The method also involves applying energy to heat the bonding agent. An end section of an optical fiber is inserted into the ferrule bore and through the bonding agent when the bonding agent is heated. The end section of the optical fiber includes a primary coating prior to insertion into the ferrule bore. During insertion of the end section of the optical fiber through the bonding agent, the heated bonding agent thermally removes at least a portion of the primary coating during so that the optical fiber can be secured in the ferrule bore with the bonding agent.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 22, 2015
    Inventors: Jeffrey Dean Danley, Robert Bruce Elkins, II, Darrin Max Miller, Dennis Craig Morrison, Kipp David Yeakel
  • Patent number: 9151895
    Abstract: Thermal removal of optical fiber coatings by insertion through heated ferrules to form ferrule assemblies for fiber optic connectors, and related assemblies are disclosed. An optical fiber includes a glass fiber, having a cladding and core, surrounded by a protective coating. By removing the coating at an end portion of the optical fiber, the end portion may be precisely positioned and secured within a ferrule to enable reliable optical communications. The coating may be thermally removed, or substantially thermally removed, by inserting the optical fiber through a rear opening of the ferrule which has been heated above a temperature sufficient to change the coating to a non-solid state. In this manner, the coating may be efficiently removed from the end portion of the optical fiber while being inserted into the ferrule bore of the ferrule to enable efficient forming of a ferrule assembly for a fiber optic connector.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 6, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Darrin Max Miller, Dennis Craig Morrison, Kipp David Yeakel
  • Publication number: 20150277048
    Abstract: An optical fiber includes a glass fiber, having a cladding and core, surrounded by a polymer coating. Some of the coating is removed by a laser beam so that the optical fiber comprises a first lengthwise portion covered by the coating and a second lengthwise portion where the coating is not present on at least ninety-five (95) percent of an exterior surface of the second lengthwise portion. A microstructure of the polymer coating, adjacent to the second lengthwise portion on the first lengthwise portion, tapers at an angle such that a thickness of the polymer coating decreases toward the second lengthwise portion as a function of proximity to the second lengthwise portion. The optical fiber may also be optionally cleaved with the laser beam.
    Type: Application
    Filed: June 12, 2015
    Publication date: October 1, 2015
    Inventors: Jeffrey Dean Danley, Robert Bruce Elkins, II, Darrin Max Miller, Zhaoxu Tian, Stephan T. Toepper, Kipp David Yeakel
  • Patent number: 9085047
    Abstract: Coating removal systems for optical fibers are disclosed. Related methods and optical fibers processed with these methods and coating removal systems are also disclosed. An optical fiber includes a glass fiber, having a cladding and core, surrounded by a protective coating which does not contribute to the optical performance of the optical fiber. By removing the coating at an end portion of the optical fiber, the end portion may be precisely positioned and secured to enable reliable optical communications. A laser beam may be directed at the protective coating to remove the protective coating by one or more ablating, melting, vaporizing, and/or thermal decomposing processes. The optical fiber may also be optionally cleaved. In this manner, the coating may be efficiently removed while retaining at least fifty percent of the tensile strength of the optical fiber.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: July 21, 2015
    Assignee: Corning Optical Communications LLC
    Inventors: Jeffrey Dean Danley, Robert Bruce Elkins, II, Darrin Max Miller, Zhaoxu Tian, Stephan T Toepper, Kipp David Yeakel
  • Publication number: 20140332510
    Abstract: Coating removal systems for optical fibers are disclosed. Related methods and optical fibers processed with these methods and coating removal systems are also disclosed. An optical fiber includes a glass fiber, having a cladding and core, surrounded by a protective coating which does not contribute to the optical performance of the optical fiber. By removing the coating at an end portion of the optical fiber, the end portion may be precisely positioned and secured to enable reliable optical communications. A laser beam may be directed at the protective coating to remove the protective coating by one or more ablating, melting, vaporizing, and/or thermal decomposing processes. The optical fiber may also be optionally cleaved. In this manner, the coating may be efficiently removed while retaining at least fifty percent of the tensile strength of the optical fiber.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 13, 2014
    Applicant: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Jeffrey Dean Danley, Robert Bruce Elkins, II, Darrin Max Miller, Zhaoxu Tian, Stephan T. Toepper, Kipp David Yeakel
  • Publication number: 20140321811
    Abstract: Thermal removal of optical fiber coatings by insertion through heated ferrules to form ferrule assemblies for fiber optic connectors, and related assemblies are disclosed. An optical fiber includes a glass fiber, having a cladding and core, surrounded by a protective coating. By removing the coating at an end portion of the optical fiber, the end portion may be precisely positioned and secured within a ferrule to enable reliable optical communications. The coating may be thermally removed, or substantially thermally removed, by inserting the optical fiber through a rear opening of the ferrule which has been heated above a temperature sufficient to change the coating to a non-solid state. In this manner, the coating may be efficiently removed from the end portion of the optical fiber while being inserted into the ferrule bore of the ferrule to enable efficient forming of a ferrule assembly for a fiber optic connector.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Applicant: Corning Cable Systems LLC
    Inventors: Darrin Max Miller, Dennis Craig Morrison, Kipp David Yeakel
  • Patent number: 8755654
    Abstract: Coating removal systems for optical fibers are disclosed. An optical fiber includes a glass fiber, having a cladding and core, surrounded by a protective coating. By removing the coating at an end portion of the optical fiber, the end portion may be precisely positioned and secured in a connector to enable reliable optical communications. A laser beam may remove the protective coating while the optical fiber is under tension. In this manner, the coating may be efficiently removed while retaining tensile strength of the optical fiber.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: June 17, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Jeffrey Dean Danley, Robert Bruce Elkins, II, Darrin Max Miller, Zhaoxu Tian, Stephan T Toepper, Kipp David Yeakel
  • Publication number: 20130322214
    Abstract: A plurality of spatially located ultrasound beacons are provided in known locations within a distributed communications system. Each of the ultrasound beacons is configured to emit ultrasound pulses that can be received by client devices in ultrasound communication range of the ultrasound beacons. The client devices are configured to analyze the received ultrasound pulses from the beacons to determine their time-difference of arrival and as a result, their location in the distributed communications systems. Use of ultrasound pulses can provide greater resolution in location determination of client devices since ultrasound waves experience strong attenuation in building walls, ceilings, and floors, thus avoiding detection of ultrasound waves from other ultrasound beacons not located in proximity to the client devices.
    Type: Application
    Filed: May 23, 2013
    Publication date: December 5, 2013
    Applicant: Corning Cable Systems LLC
    Inventors: Ulrich Wilhelm Heinz Neukirch, Kipp David Yeakel