Patents by Inventor Kiril A. Pandelisev

Kiril A. Pandelisev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7797966
    Abstract: Fused silica injected or created by pyrolysis of SiCl4 are introduced in a powder state into a vacuum chamber. Pluralities of jet streams of fused silica are directed towards a plurality of heated substrates. The particles attach on the substrates and form shaped bodies of fused silica called preforms. For uniformity the substrates are rotated. Dopant is be added in order to alter the index of refraction of the fused silica. Prepared soot preforms are vitrified in situ. Particles are heated, surface softened and agglomerated in mass and are collected in a heated crucible and are softened and flowed through a heated lower throat. The material is processed into quartz plates and rods for wafer processing and optical windows.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: September 21, 2010
    Assignee: Single Crystal Technologies, Inc.
    Inventor: Kiril A. Pandelisev
  • Publication number: 20090020705
    Abstract: The new scintillators are connected at one or more points or on one or more sides or faces, or on any or all sides to conductors which are collimators, lenses or fiber ends. Optical fibers in cables conduct the photons generated by the crystal scintillators to photon-actuated devices. The devices may be mounted near the crystal scintillators or remote from the crystal scintillators, for example on surfaces near drilled wells or exploration holes. The crystals or scintillators have any of several cross-sections. Down hole detectors or detectors used in other adverse conditions are ruggedized, with rugged flexible outer cases which are transparent to the looked-for energy, particles or rays, gamma rays for example. Inner scintillator construction of multiple aligned or angularly related scintillators connected to optical fiber ends allow bending, twisting and flexing without damaging scintillator arrays, individual scintillators, lenses or fiber optic connections.
    Type: Application
    Filed: July 21, 2008
    Publication date: January 22, 2009
    Inventor: Kiril A. PANDELISEV
  • Publication number: 20070172603
    Abstract: Process, apparatus, and application of a silicon/silicon alloy/silicon compound, having at least one silicon atom, to a boat, an epitaxial chamber, and tubing and liners, is described. Powder pressing, plasma and non plasma powder deposition, slurry deposition and slurry casting, silicon/silicon alloy casting and directional solidification are among methods useful for forming the devices. The articles have application in the wafer processing industry.
    Type: Application
    Filed: March 22, 2007
    Publication date: July 26, 2007
    Inventor: Kiril Pandelisev
  • Publication number: 20070150035
    Abstract: A method and apparatus for speeding the healing process of soft tissues, bone fractures, cancerous tissue, nerve pathways and other body tissues, wherein a portable base having a plurality of cells is applied with the cells facing or encircling the wound. The cells generate electro-magnetic radiations, radio frequencies, magnetic fields, current-voltage signals or combinations thereof via a field generator coil or electrodes. Each cell is powered and controlled individually via self-contained controls or remote controls. The type, frequency, pulse characteristics, repetition rate and signal density of the energy are varied according to the size and type of wound to be treated and according to the proximity of each cell to the wounded tissue.
    Type: Application
    Filed: February 12, 2007
    Publication date: June 28, 2007
    Inventor: Kiril Pandelisev
  • Patent number: 7177696
    Abstract: A method and apparatus for speeding the healing process of soft tissues, bone fractures, cancerous tissue, nerve pathways and other body tissues wherein a portable base comprising a plurality of cells is applied with the cells facing or encircling the wound. The cells generate electro-magnetic radiations, radio frequencies, magnetic fields, current-voltage signals or combinations thereof via a field generator coil or electrodes. Each cell is powered and controlled individually via self-contained controls or remote controls. The type, frequency, pulse characteristics, repetition rate and signal density of the energy are varied according to the size and type of wound to be treated and according to the proximity of each cell to the wounded tissue.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: February 13, 2007
    Assignee: H & P Medical Research, Inc.
    Inventor: Kiril A. Pandelisev
  • Patent number: 6908510
    Abstract: For producing ultra pure materials a first station has a porous gas distributor. A material supply supplies material to the porous gas distributor. A gas source supplies gas to the distributor and through the distributor to the material in contact with the distributor. A heater adjacent the porous gas distributor heats and melts the material as gas is passed through the material. Dopant and a treatment liquid is or solid supplied to the material. Treated material is discharged from the first station into a second station. A second porous gas distributor in the second station distributes gas through the material in the second station. A crucible receives molten material from the second station for casting, crystal growing in the crucible or for refilling other casting or crystal growth crucibles. The material and the porous gas distributor move with respect to each other. One porous gas distributor is cylindrical and is tipped.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: June 21, 2005
    Assignee: Phoenix Scientific Corporation
    Inventor: Kiril A. Pandelisev
  • Patent number: 6800137
    Abstract: Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: October 5, 2004
    Assignee: Phoenix Scientific Corporation
    Inventor: Kiril A. Pandelisev
  • Publication number: 20040173948
    Abstract: Process, apparatus and application of silicon/silicon alloy/silicon compound comprising at least one silicon atom boat, silicon/silicon alloy/silicon compound comprising at least one silicon atom made epitaxial chamber and various silicon/silicon alloy/silicon compound comprising at least one silicon atom made tubing and liners is described here. Powder pressing, plasma and non plasma powder deposition, slurry deposition and slurry casting, silicon/silicon alloy casting and directional solidification are among few methods described here. Silicon/silicon alloy made articles and some of their applications in the wafer processing industry is also described.
    Type: Application
    Filed: March 19, 2004
    Publication date: September 9, 2004
    Inventor: Kiril A. Pandelisev
  • Patent number: 6743294
    Abstract: Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: June 1, 2004
    Assignee: Optoscint, Inc.
    Inventor: Kiril A. Pandelisev
  • Publication number: 20020117625
    Abstract: The new scintillators are connected at one or more points or on one or more sides or faces, or on any or all sides to conductors which are collimators, lenses or fiber ends. Optical fibers in cables conduct the photons generated by the crystal scintillators to photon-actuated devices. The devices may be mounted near the crystal scintillators or remote from the crystal scintillators, for example on surfaces near drilled wells or exploration holes. The crystals or scintillators have any of several cross-sections. Down hole detectors or detectors used in other adverse conditions are ruggedized, with rugged flexible outer cases which are transparent to the looked-for energy, particles or rays, gamma rays for example. Inner scintillator construction of multiple aligned or angularly related scintillators connected to optical fiber ends allow bending, twisting and flexing without damaging scintillator arrays, individual scintillators, lenses or fiber optic connections.
    Type: Application
    Filed: June 15, 2001
    Publication date: August 29, 2002
    Inventor: Kiril A. Pandelisev
  • Publication number: 20020092465
    Abstract: Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
    Type: Application
    Filed: March 4, 2002
    Publication date: July 18, 2002
    Inventor: Kiril A. Pandelisev
  • Publication number: 20020083740
    Abstract: Silica grain of desired properties and size is created in a vacuum chamber. Fine silica powder is injected in the chamber or silica powder is formed in situ by combusting precursors. A plasma is formed centrally in the chamber to soften the silica powders so that they stick together and form larger grains of desired size. The grains are collected, doped, fused and flowed into tubes or rods. A puller pulls the tube or rod through a chamber seal into a lower connected vacuum chamber. The tube or rod is converted to rods and fibers or plates and bars in the connected chamber. Fused silica in a crucible tray is subjected to ultrasound or other oscillations for outgassing. Gases are removed by closely positioned vacuum ports.
    Type: Application
    Filed: June 15, 2001
    Publication date: July 4, 2002
    Inventor: Kiril A. Pandelisev
  • Publication number: 20020083739
    Abstract: Fused silica created by pyrolysis of SiCl4 are introduced in a powder state into a vacuum chamber. Pluralities of jet streams of fused silica are directed towards a plurality of heated substrates. The particles attach on the substrates and form shaped bodies of fused silica called preforms. For uniformity the substrates are rotated. Dopant is be added in order to alter the index of refraction of the fused silica. Prepared soot preforms are vitrified in situ. The material is processed into quartz tubes for fiber optics and other applications, quartz rods for fused silica wafers for semiconductors and various optical applications and quartz plates for wafer processing and optical windows.
    Type: Application
    Filed: June 15, 2001
    Publication date: July 4, 2002
    Inventor: Kiril A. Pandelisev
  • Publication number: 20020083741
    Abstract: Fused silica injected or created by pyrolysis of SiCl4 are introduced in a powder state into a vacuum chamber. Pluralities of jet streams of fused silica are directed towards a plurality of heated substrates. The particles attach on the substrates and form shaped bodies of fused silica called preforms. For uniformity the substrates are rotated. Dopant is be added in order to alter the index of refraction of the fused silica. Prepared soot preforms are vitrified in situ. Particles are heated, surface softened and agglomerated in mass and are collected in a heated crucible and are softened and flowed through a heated lower throat. The material is processed into quartz plates and rods for wafer processing and optical windows.
    Type: Application
    Filed: June 15, 2001
    Publication date: July 4, 2002
    Inventor: Kiril A. Pandelisev
  • Patent number: 6402840
    Abstract: Crystal grower and purification stations immersed within crystal growing furnaces have preparation chambers with circular, elliptical, rectangular or polygonal cross-sections. A lateral heater and a base heater are connected for immersion mounting within the preparation chamber. A porous distributor is mounted above the base heater for immersion within the chamber. An opening or openings in a bottom of the chamber releases crystal material to a crucible or crucibles. A lid mounted on the chamber closes the chamber and forms an enclosed chamber with a closed environment. A crystal material supply, a dopant supply and a reduced pressure exhaust line are connected to the chamber. A purification substance supply is connected to the chamber with fluid purification substances supplied to the porous distributor. An external heater surrounds the chamber for heating the chamber and its contents. Insulation surrounds the external heater. An enclosure surrounds the insulation.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: June 11, 2002
    Assignee: Optoscint, Inc.
    Inventor: Kiril A. Pandelisev
  • Publication number: 20020062784
    Abstract: For producing ultra pure materials a first station has a porous gas distributor. A material supply supplies material to the porous gas distributor. A gas source supplies gas to the distributor and through the distributor to the material in contact with the distributor. A heater adjacent the porous gas distributor heats and melts the material as gas is passed through the material. Dopant and a treatment liquid is or solid supplied to the material. Treated material is discharged from the first station into a second station. A second porous gas distributor in the second station distributes gas through the material in the second station. A crucible receives molten material from the second station for casting, crystal growing in the crucible or for refilling other casting or crystal growth crucibles. The material and the porous gas distributor move with respect to each other. One porous gas distributor is cylindrical and is tipped.
    Type: Application
    Filed: December 11, 2001
    Publication date: May 30, 2002
    Inventor: Kiril A. Pandelisev
  • Publication number: 20020053317
    Abstract: For producing ultra pure materials a first station has a porous gas distributor. A material supply supplies material to the porous gas distributor. A gas source supplies gas to the distributor and through the distributor to the material in contact with the distributor. A heater adjacent the porous gas distributor heats and melts the material as gas is passed through the material. Dopant and a treatment liquid is or solid supplied to the material. Treated material is discharged from the first station into a second station. A second porous gas distributor in the second station distributes gas through the material in the second station. A crucible receives molten material from the second station for casting, crystal growing in the crucible or for refilling other casting or crystal growth crucibles. The material and the porous gas distributor move with respect to each other. One porous gas distributor is cylindrical and is tipped.
    Type: Application
    Filed: December 11, 2001
    Publication date: May 9, 2002
    Inventor: Kiril A. Pandelisev
  • Publication number: 20020040675
    Abstract: Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
    Type: Application
    Filed: December 11, 2001
    Publication date: April 11, 2002
    Inventor: Kiril A. Pandelisev
  • Patent number: 6352588
    Abstract: For producing ultra pure materials a first station has a porous gas distributor. A material supply supplies material to the porous gas distributor. A gas source supplies gas to the distributor and through the distributor to the material in contact with the distributor. A heater adjacent the porous gas distributor heats and melts the material as gas is passed through the material. Dopant and a treatment liquid is or solid supplied to the material. Treated material is discharged from the first station into a second station. A second porous gas distributor in the second station distributes gas through the material in the second station. A crucible receives molten material from the second station for casting, crystal growing in the crucible or for refilling other casting or crystal growth crucibles. The material and the porous gas distributor move with respect to each other. One porous gas distributor is cylindrical and is tipped.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: March 5, 2002
    Assignee: Optoscint, Inc.
    Inventor: Kiril A. Pandelisev
  • Patent number: 6334899
    Abstract: Reactive gas is released through a crystal source material or melt to react with impurities and carry the impurities away as gaseous products or as precipitates or in light or heavy form. The gaseous products are removed by vacuum and the heavy products fall to the bottom of the melt. Light products rise to the top of the melt. After purifying, dopants are added to the melt. The melt moves away from the heater and the crystal is formed. Subsequent heating zones re-melt and refine the crystal, and a dopant is added in a final heating zone. The crystal is divided, and divided portions of the crystal are re-heated for heat treating and annealing.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: January 1, 2002
    Assignee: Optoscint, Inc.
    Inventor: Kiril A. Pandelisev